Abstract

We have fabricated two-dimensional periodic arrays of titanium nitride (TiN) nanoparticles from epitaxial thin films. The thin films of TiN, deposited on sapphire and single crystalline magnesium oxide substrates by a pulsed laser deposition, are metallic and show reasonably small optical loss in the visible and near infrared regions. The thin films prepared were structured to the arrays of nanoparticles with the pitch of 400 nm by the combination of nanoimprint lithography and reactive ion etching. Optical transmission indicates that the arrays support the collective plasmonic modes, where the localized surface plasmon polaritons in TiN nanoparticles are radiatively coupled through diffraction. Numerical simulation visualizes the intense fields accumulated both in the nanoparticles and in between the particles, confirming that the collective mode originates from the simultaneous excitation of localized surface plasmon polaritons and diffraction. This study experimentally verified that the processing of TiN thin films with the nanoimprint lithography and reactive ion etching is a powerful and versatile way of preparing plasmonic nanostructures.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

22 January 2016: Corrections were made to the body text and acknowledgments.


OSA Recommended Articles
Correlation between electrical direct current resistivity and plasmonic properties of CMOS compatible titanium nitride thin films

S. Viarbitskaya, J. Arocas, O. Heintz, G. Colas-Des-Francs, D. Rusakov, U. Koch, J. Leuthold, L. Markey, A. Dereux, and J.-C. Weeber
Opt. Express 26(8) 9813-9821 (2018)

Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications

Christine M. Zgrabik and Evelyn L. Hu
Opt. Mater. Express 5(12) 2786-2797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  2. W. L. Barnes, “Surface plasmonpolariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87 (2006).
    [Crossref]
  3. O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
    [Crossref] [PubMed]
  4. K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [Crossref]
  5. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
    [Crossref] [PubMed]
  6. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
    [Crossref]
  7. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [Crossref] [PubMed]
  8. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [Crossref] [PubMed]
  9. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
    [Crossref]
  10. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref] [PubMed]
  11. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotech. 6, 423–427 (2011).
    [Crossref]
  12. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
    [Crossref] [PubMed]
  13. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
    [Crossref]
  14. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  15. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  16. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
    [Crossref]
  17. S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
    [Crossref]
  18. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
    [Crossref] [PubMed]
  19. J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
    [Crossref]
  20. J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
    [Crossref] [PubMed]
  21. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
    [Crossref] [PubMed]
  22. R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).
  23. N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
    [Crossref]
  24. K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
    [Crossref]
  25. J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
    [Crossref]
  26. S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
    [Crossref]
  27. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
    [Crossref] [PubMed]
  28. U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
    [Crossref] [PubMed]
  29. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
    [Crossref] [PubMed]
  30. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [Crossref] [PubMed]
  31. S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett. 109, 166803 (2012).
    [Crossref] [PubMed]
  32. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
    [Crossref]
  33. V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Physics B: Atom. Mol. Opt. Phys. 38, L115 (2005).
    [Crossref]
  34. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [Crossref] [PubMed]
  35. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21, 4250–4262 (2013).
    [Crossref] [PubMed]
  36. K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
    [Crossref]
  37. J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
    [Crossref]
  38. W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
    [Crossref]
  39. E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
    [Crossref]
  40. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
    [Crossref]
  41. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
    [Crossref]

2015 (2)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
[Crossref]

2014 (2)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

2013 (2)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21, 4250–4262 (2013).
[Crossref] [PubMed]

2012 (4)

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett. 109, 166803 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

2011 (4)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotech. 6, 423–427 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

2010 (4)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

2009 (3)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref] [PubMed]

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
[Crossref] [PubMed]

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

2008 (4)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

2007 (1)

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

2006 (3)

W. L. Barnes, “Surface plasmonpolariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87 (2006).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

2005 (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Physics B: Atom. Mol. Opt. Phys. 38, L115 (2005).
[Crossref]

2004 (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

2003 (1)

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

2000 (2)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
[Crossref]

1998 (1)

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

1992 (1)

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

1989 (1)

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

1986 (1)

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

1978 (1)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

Ambwani, P.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Anika, K.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Aspnes, D. E.

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Avlasevich, Y.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Babicheva, V. E.

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

W. L. Barnes, “Surface plasmonpolariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87 (2006).
[Crossref]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

Biagioni, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Biunno, N.

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

Boltasseva, A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Brüning, C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Callegari, V.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Carron, K. T.

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

Cerruti, M.

Chen, X.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Chowdhury, R.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Christensen, A. N.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Coenen, T.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Du, L.

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Emani, N.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Fan, S.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Feichtner, T.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Ferrera, M.

Fluhr, W.

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

Forchel, A.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Franzen, S.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
[Crossref] [PubMed]

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Fujita, K.

R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

Geisler, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Gerber, R. W.

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Guler, U.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

Hattori, K.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Hecht, B.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Heil, S. B. S.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Holland, O. W.

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

Huang, J.-S.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Inumaru, K.

K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Irudayaraj, J. M. K.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Ishii, S.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Iwai, H.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Iwamoto, T.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Jyumonji, M.

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Kaiser, R.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
[Crossref]

Kamp, M.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
[Crossref]

Kern, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Kessels, W. M. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

Kildishev, A. V.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Kim, J.

Kinsey, N.

Koenderink, A. F.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Langereis, E.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Lehmann, H. W.

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

Leighton, C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Lindquist, N. C.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Liu, J.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Losego, M.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
[Crossref] [PubMed]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Lozano, G.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

Manno, M.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Maria, J.-P.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
[Crossref] [PubMed]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Physics B: Atom. Mol. Opt. Phys. 38, L115 (2005).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Meier, M.

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Moerner, W. E.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Müllen, K.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Müller-Vogt, G.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

Murai, S.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21, 4250–4262 (2013).
[Crossref] [PubMed]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett. 109, 166803 (2012).
[Crossref] [PubMed]

R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

Nagpal, P.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Naik, G.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Naik, G. V.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Narayan, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

Ndukaife, J. C.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

Ni, X.

Nnanna, A. G. A.

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotech. 6, 423–427 (2011).
[Crossref]

Oh, S.-H.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Ohara, T.

K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
[Crossref]

Ohmi, S.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Park, J. H.

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
[Crossref]

Pirruccio, G.

Polman, A.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Prangsma, J. C.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Rhodes, C.

S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34, 2867–2869 (2009).
[Crossref] [PubMed]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Rivas, J. G.

Rodriguez, S. R. K.

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Saber, S. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Saha, B.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Sands, T. D.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
[Crossref]

Sato, F.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Schroeder, J. L.

Sennhauser, U.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Shalaev, V.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Shalaev, V. M.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22, 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

Singh, J.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Snchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

Spengler, W.

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

Srivatsa, A. R.

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

Stach, E. A.

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Sugioka, K.

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

Tanaka, K.

R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).

Tiwari, P.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Tonotani, J.

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Toyoda, K.

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

van de Sanden, M. C. M.

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref] [PubMed]

Verschuuren, M. A.

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

Weinmann, P.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

West, P.

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Wokaun, A.

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

Wu, X.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Xu, S.

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

Yamanaka, S.

K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
[Crossref]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Yasuhara, R.

R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).

Zheleva, T.

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotech. 6, 423–427 (2011).
[Crossref]

Ziegler, J.

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Zongfu, Y.

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

J. H. Park, P. Ambwani, M. Manno, N. C. Lindquist, P. Nagpal, S.-H. Oh, C. Leighton, and D. J. Norris, “Single-crystalline silver films for plasmonics,” Adv. Mater. 24, 3988–3992 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

N. Biunno, J. Narayan, A. R. Srivatsa, and O. W. Holland, “Laser deposition of epitaxial titanium nitride films on (100)MgO,” Appl. Phys. Lett. 55, 405–407 (1989).
[Crossref]

J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, and T. Zheleva, “Epitaxial growth of tin films on (100) silicon substrates by laser physical vapor deposition,” Appl. Phys. Lett. 61, 1290–1292 (1992).
[Crossref]

Appl. Surf. Sci. (1)

K. Inumaru, T. Ohara, and S. Yamanaka, “Pulsed laser deposition of epitaxial titanium nitride on MgO(001) monitored by RHEED oscillation,” Appl. Surf. Sci. 158, 375–377 (2000).
[Crossref]

J. Appl. Phys. (2)

E. Langereis, S. B. S. Heil, M. C. M. van de Sanden, and W. M. M. Kessels, “In situ spectroscopic ellipsometry study on the growth of ultrathin tin films by plasma-assisted atomic layer deposition,” J. Appl. Phys. 100, 023534 (2006).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Appl. Phys. 100, 054905 (2006).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

J. Mater. Sci. (1)

S. Xu, L. Du, K. Sugioka, K. Toyoda, and M. Jyumonji, “Preferred growth of epitaxial tin thin film on silicon substrate by pulsed laser deposition,” J. Mater. Sci. 33, 1777–1782 (1998).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmonpolariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87 (2006).
[Crossref]

J. Opt. Soc. Am. B. (1)

K. T. Carron, H. W. Lehmann, W. Fluhr, M. Meier, and A. Wokaun, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B. 3, 430–440 (1986).
[Crossref]

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

J. Physics B: Atom. Mol. Opt. Phys. (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Physics B: Atom. Mol. Opt. Phys. 38, L115 (2005).
[Crossref]

J. Vac. Sci. Tech. B (1)

J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of tin film using Ar/CHF3,Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma,” J. Vac. Sci. Tech. B 21, 2163–2168 (2003).
[Crossref]

Laser Photon. Rev. (1)

P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
[Crossref]

Materials (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8, 3128 (2015).
[Crossref]

MRS Bulletin (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin 37, 768–779 (2012).
[Crossref]

Nano Lett. (3)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13, 6078–6083 (2013).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Snchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7, 2871–2875 (2007).
[Crossref] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic YagiUda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett. 11, 3779–3784 (2011).
[Crossref] [PubMed]

Nat Commun (1)

J.-S. Huang, V. Callegari, P. Geisler, C. Brüning, J. Kern, J. C. Prangsma, X. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat Commun 1, 150 (2010).
[Crossref]

Nat. Photon. (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photon. 4, 312–315 (2010).
[Crossref]

K. Anika, Y. Zongfu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[Crossref]

Nature Nanotech. (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Nanotech. 6, 423–427 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. B (2)

W. Spengler, R. Kaiser, A. N. Christensen, and G. Müller-Vogt, “Raman scattering, superconductivity, and phonon density of states of stoichiometric and nonstoichiometric tin,” Phys. Rev. B 17, 1095–1101 (1978).
[Crossref]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B 82, 155447 (2010).
[Crossref]

Phys. Rev. Lett. (5)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref] [PubMed]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett. 109, 166803 (2012).
[Crossref] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. USA 111, 7546–7551 (2014).
[Crossref] [PubMed]

Science (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011).
[Crossref] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

R. Yasuhara, S. Murai, K. Fujita, and K. Tanaka, “Atomically smooth and single crystalline indium tin oxide thin film with low optical loss,” Phys. Stat. Sol. C2533–2536 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the fabrication process of TiN nanoparticle arrays.
Fig. 2
Fig. 2 (a)Out-of-plane XRD profile of the TiN thin film grown on sapphire(0001). The left and right insets show the optical image of the thin film and the rocking curve of the TiN 111 peak. (b)Out-of-plane XRD profile of the TiN thin film grown on MgO(100). The inset is the magnified profile. (c) Logarithmic contour plot of reciprocal space map of X-ray diffraction for TiN thin film on MgO(100).
Fig. 3
Fig. 3 (a) AFM image of the TiN thin film grown on MgO(100), scanning 5 × 5 μm (left panel), and the result of line scan (right panel). (b) Temperature dependence of the resistivity of the TiN thin film grown on MgO(100). The inset shows a zoom-up of the plot between 0 and 10 K.
Fig. 4
Fig. 4 TanΨ (left ordinate) and cosΔ (right) for the TiN thin films on sapphire(0001)(a) and MgO(100)(b) obtained by spectroscopic ellipsometry. Fitting results are plotted as dashed lines.
Fig. 5
Fig. 5 Real (a) and imaginary (b) parts of the dielectric functions of the TiN thin films on MgO(black curve) and sapphire(grey)deduced from the fit to the ellipsometry data. The quality factor for SPP propagation defined as ε2/ε″ (c), and that for localized SPP resonance as −ε′/ε″ (d) are also shown. The data for a high-quality TiN thin film reported by Neik et al. [27] is plotted for comparison as dashed curves.
Fig. 6
Fig. 6 Top-view SEM images of the periodic arrays of TiN nanoparticles, denoted as array A(a) and B(b). The arrays have the same pitch of 400 nm in x and y directions(axes are denoted on the images), and different average diameter of nanoparticles. Upper-right insets are the magnified images. Upper-left inset in (b) is an optical image of the sample, showing a diffraction originating from the periodicity.
Fig. 7
Fig. 7 Experimental and simulated transmission spectra for the nanoparticle arrays. (a)(b):Experimental spectra for p-polarized light for array A(a) and B(b). The incident angle was varied so as to provide momentum only in x direction. (c)(d):Simulated spectra for the model with the diameters of the nanoparticles being 180 nm(c) and 260 nm(d). The dotted lines in (a)–(d) are (−1, 0) diffraction order. (e)(f):Calculated spatial distribution of the square magnitude of the electric field normalized to the incident field, |E|2/|E 0|2, in the xy plane 20 nm above the substrate for the model with nanoparticle diameter of 180 nm, for λ = 1000 nm at two different incident angles of θ in = 0 (e) and 46 ° (f) (indicated by the stars in Fig. 7(c)). The images show 3 × 3 unit cells in x and y directions, for the sake of better visibility of the field distribution.

Tables (1)

Tables Icon

Table 1 Drude-Lorentz oscillator parameters for the thin films of TiN deposited on MgO(100) and sapphire(0001).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε inf ω p 2 ω 2 + i Γ D ω + j = 1 2 f j ω o 2 j ω o 2 j ω 2 + i γ j ω ,
k out 2 = k in | | 2 + m 1 2 ( 2 π / a x ) 2 + m 2 2 ( 2 π / a y ) 2 + 2 k in | | m 1 ( 2 π / a x ) ,

Metrics