Abstract

This work develops a sensitivity-enhanced optical temperature sensor that is based on a silicon nitride (SiN) micro-ring resonator that incorporates nematic liquid crystal (NLC) cladding. As the ambient temperature changes, the refractive index of the NLCs, which have a large thermal-optical coefficient, dramatically varies. The change in the refractive index of the NLC cladding that is caused by the temperature shift can alter the effective refractive index of the micro-ring resonator and make the resonance wavelength very sensitive to the ambient temperature. The temperature-sensitivity of the device with 5CB cladding for TM-polarized light was measured to be as high as 1nm/°C between 25 and 33 °C and over 2nm/°C at temperatures close to clearing temperature of the 5CB cladding. The temperature-sensitivity of the proposed device is at least 55 times that of the micro-ring resonator with air cladding, whose temperature-dependent wavelength shift for TM-polarized light is 18pm/ °C.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable high Q-factor micro-ring resonator based on blue phase liquid crystal cladding

Chun-Ta Wang, Yuan-Cheng Li, Jui-Hao Yu, Cheng Yu Wang, Chih-Wei Tseng, Hung-Chang Jau, Yung-Jui Chen, and Tsung-Hsien Lin
Opt. Express 22(15) 17776-17781 (2014)

Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal

Tzyy-Jiann Wang, Shun-Chen Yang, Tien-Jung Chen, and Bo-Yu Chen
Opt. Express 20(14) 15853-15858 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. Qian, C. L. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36(9), 1548–1550 (2011).
    [Crossref] [PubMed]
  2. H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
    [Crossref]
  3. Y.-G. Han, S. Lee, C.-S. Kim, J. Kang, Y. Chung, and U.-C. Paek, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Express 11(5), 476–481 (2003).
    [Crossref] [PubMed]
  4. Y.-J. Rao, Z. L. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15(22), 14936–14941 (2007).
    [Crossref] [PubMed]
  5. M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
    [Crossref]
  6. A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
    [Crossref] [PubMed]
  7. I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
    [Crossref]
  8. M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [Crossref] [PubMed]
  9. R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
    [Crossref] [PubMed]
  10. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B.-T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [Crossref] [PubMed]
  11. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
    [Crossref]
  12. S. Weiss, H. Ouyang, J. Zhang, and P. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13(4), 1090–1097 (2005).
    [Crossref] [PubMed]
  13. S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
    [Crossref] [PubMed]
  14. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett. 36(19), 3876–3878 (2011).
    [Crossref] [PubMed]
  15. T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express 20(14), 15853–15858 (2012).
    [Crossref] [PubMed]
  16. J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
    [Crossref]
  17. I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
    [Crossref]
  18. J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
    [Crossref] [PubMed]
  19. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

2014 (1)

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
[Crossref]

2013 (2)

I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (3)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B.-T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (2)

Y.-J. Rao, Z. L. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15(22), 14936–14941 (2007).
[Crossref] [PubMed]

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

2006 (1)

H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
[Crossref]

2005 (1)

2004 (2)

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

2003 (2)

Bae, H. K.

Baets, R.

Beeckman, J.

Breglio, G.

Burgmeier, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Chakari, A.

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

Chen, B.-Y.

Chen, T.-J.

Chung, Y.

Claes, T.

De Cort, W.

Deng, H.-Y.

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Dong, X.

Fainman, Y.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
[Crossref]

Fauchet, P.

Fujishima, A.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Gauzia, S.

Goncharenko, I. A.

I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
[Crossref]

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Gu, Z. Z.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Guo, J.

Han, Y.-G.

He, S.

Heidrich, H.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Irace, A.

Jang, E.

H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
[Crossref]

Jin, S.

Kang, J.

Khoo, I.-C.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
[Crossref]

Kim, C.-S.

Kim, G.-D.

Kim, H.-R.

H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
[Crossref]

Kireenko, V.

I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
[Crossref]

Koch, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Kubo, S.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Kwon, M.-S.

Lee, H.-S.

Lee, S.

Lee, S.-D.

H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
[Crossref]

Lee, S.-S.

Lee, W.-G.

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

Li, J.

Liao, X.

Lim, B.-T.

Lützow, P.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Marciniak, M.

I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
[Crossref]

Meyrueis, P.

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

Mokdad, R.

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

Neyts, K.

Orghici, R.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Ouyang, H.

Paek, U.-C.

Park, C.-H.

Ptasinski, J.

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
[Crossref]

Qian, W.

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Ran, Z. L.

Rao, Y.-J.

Remouche, M.

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

Sato, O.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Schade, W.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Segawa, H.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Steier, W. H.

Takahashi, K.

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Waldvogel, S.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Wang, T.-J.

Wei, H.

Weiss, S.

Welschoff, N.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Wu, S.-T.

Yang, S.-C.

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

Zhang, J.

Zhang, S.

Zhang, Z.

Zhao, C. L.

Appl. Phys. Lett. (2)

I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett. 97(8), 081108 (2010).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102(5), 051106 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H.-R. Kim, E. Jang, and S.-D. Lee, “Electrooptic temperature sensor based on a Fabry–Pérot resonator with a liquid crystal film,” IEEE Photonics Technol. Lett. 18(8), 905–907 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Materials (Basel) (1)

J. Ptasinski, I.-C. Khoo, and Y. Fainman, “Passive temperature stabilization of silicon photonic devices using liquid crystals,” Materials (Basel) 7(3), 2229–2241 (2014).
[Crossref]

Opt. Eng. (1)

I. A. Goncharenko, V. Kireenko, and M. Marciniak, “Optimizing the structure of optical temperature sensors on the base of slot and double-slot ring waveguides with liquid crystal filling,” Opt. Eng. 53(7), 071802 (2013).
[Crossref]

Opt. Express (8)

Y.-G. Han, S. Lee, C.-S. Kim, J. Kang, Y. Chung, and U.-C. Paek, “Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities,” Opt. Express 11(5), 476–481 (2003).
[Crossref] [PubMed]

A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
[Crossref] [PubMed]

J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystals,” Opt. Express 12(9), 2002–2010 (2004).
[Crossref] [PubMed]

S. Weiss, H. Ouyang, J. Zhang, and P. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13(4), 1090–1097 (2005).
[Crossref] [PubMed]

Y.-J. Rao, Z. L. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15(22), 14936–14941 (2007).
[Crossref] [PubMed]

M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B.-T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express 20(14), 15853–15858 (2012).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Opt. Laser Technol. 39(7), 1454–1460 (2007).
[Crossref]

Opt. Lett. (2)

Sensors (Basel) (1)

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors (Basel) 10(7), 6788–6795 (2010).
[Crossref] [PubMed]

Other (1)

I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic cross-section and (b) top view of designed resonator; (c) experimental setup for measuring transmission spectra at near infrared wavelengths. SMF: single-mode fiber; PC: polarization controller; PMLF: polarization-maintaining lens fiber; DUT: device under test; PD: photo-detector.
Fig. 2
Fig. 2 Transmission spectra of proposed resonator with air cladding in (a) TE and (b) TM modes at temperatures from 26 to 60°C; (c) corresponding temperature-dependent resonance wavelength shift.
Fig. 3
Fig. 3 Operation of proposed resonator with NLC cladding at various temperatures.
Fig. 4
Fig. 4 Photographs of proposed resonator with LC cladding, observed under T-POM at different temperatures.
Fig. 5
Fig. 5 (a) Temperature-dependent resonance wavelength shift of designed device with 5CB cladding in TE and TM modes. Insets show the corresponding waveguide mode, the offset is due to the bending waveguide. (b) Transmission spectra and (c) temperature-sensitivity of device in TM mode.

Metrics