Abstract

All-fiber fourth and fifth harmonic generation from a single source is demonstrated experimentally and analyzed theoretically. Light from a fully fiberized high power master oscillator power amplifier is launched into a periodically poled silica fiber generating the second harmonic. The output is then sent through two optical microfibers that generate the third and fourth harmonic, respectively, via four wave mixing (FWM). For a large range of pump wavelengths in the silica optical transmission window, phase matched FWM can be achieved in the microfibers at two different diameters with relatively wide fabrication tolerances of up to +/−5 nm. Our simulations indicate that by optimizing the second harmonic generation efficiency and the diameters and lengths of the two microfibers, conversion efficiencies to the fourth harmonic in excess of 25% are theoretically achievable.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber sixth-harmonic generation of deep UV

Yun Wang, Timothy Lee, Francesco De Lucia, Muhammad I. M. Abdul Khudus, Pier J. A. Sazio, Martynas Beresna, and Gilberto Brambilla
Opt. Lett. 42(22) 4671-4674 (2017)

Highly efficient second, third and fourth harmonic generation from a two-branch femtosecond erbium fiber source

Konstantinos Moutzouris, Florian Sotier, Florian Adler, and Alfred Leitenstorfer
Opt. Express 14(5) 1905-1912 (2006)

Fourth-harmonic generation in a single lithium niobate-crystal with cascaded second-harmonic generation

Brett A. Hooper, Daniel J. Gauthier, and John M. J. Madey
Appl. Opt. 33(30) 6980-6984 (1994)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science+Business Media, Inc, 2005).
  2. V. P. Gapontsev, V. A. Tyrtyshnyy, O. I. Vershinin, B. L. Davydov, and D. A. Oulianov, “Third harmonic frequency generation by Type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal,” Opt. Express 21(3), 3715–3720 (2013).
    [Crossref] [PubMed]
  3. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008).
    [Crossref] [PubMed]
  4. D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
    [Crossref]
  5. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” J. Opt. Soc. Am. B 22(2), 354–361 (2005).
    [Crossref]
  6. P.J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
    [Crossref]
  7. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb–Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000).
    [Crossref]
  8. G.K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4,” Opt. Lett. 33(24), 2955–2957 (2008).
    [Crossref] [PubMed]
  9. S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
    [Crossref]
  10. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
    [Crossref] [PubMed]
  11. W. Margulis and U. Österberg, “Second-harmonic generation in optical glass fibers,” J. Opt. Soc. Am. B 5(2), 312–316 (1988).
    [Crossref]
  12. N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
    [Crossref] [PubMed]
  13. V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. De Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24(4), 208–210 (1999).
    [Crossref]
  14. W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
    [Crossref] [PubMed]
  15. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [Crossref] [PubMed]
  16. A. Canagasabey, C. Corbari, Z. Zhang, P.G. Kazansky, and M. Ibsen., “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32(13), 1863–1865 (2007).
    [Crossref] [PubMed]
  17. A. Canagasabey, M. Ibsen, K. Gallo, A. V. Gladishev, E. M. Dianov, C. Corbari, and P. G. Kazansky, “Aperiodically poled silica fibers for bandwidth control of quasi-phase-matched second-harmonic generation,” Opt. Lett. 35(5), 724–726 (2010)
    [Crossref] [PubMed]
  18. C. Corbari, A. V. Gladishev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
    [Crossref] [PubMed]
  19. E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
    [Crossref]
  20. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
    [Crossref] [PubMed]
  21. T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).
  22. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
    [Crossref]
  23. M.I.M Abdul Khudus, T. Lee, P. Horak, and G. Brambilla, “Effect of intrinsic surface roughness on the efficiency of intermodal phase matching in silica optical nanofibers,” Opt. Lett. 40(7), 1318–1321 (2015).
    [Crossref]
  24. M. I. M. Abdul Khudus, F. De Lucia, C. Corbari, T. Lee, P. Horak, P. Sazio, and G. Brambilla, “Phase matched parametric amplification via four-wave mixing in optical microfibers,” Opt. Lett. 41(4), 761–764 (2015).
    [Crossref]
  25. A. C. Sodre, J. C. Boggio, A. Rieznik, H. Hernandez-Figueroa, H. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816–2828 (2008).
    [Crossref]
  26. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19(9), 2171–2182 (2002).
    [Crossref]
  27. J.C. Boggio, S. Moro, B.P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, “Tunable parametric all-fiber short-wavelength ir transmitter,” J. Lightwave Technol. 28(4), 443–447 (2010).
    [Crossref]
  28. Y.H. Li, Y.Y. Zhao, and L.J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Opt. Lett. 37(16) 3441–3443 (2012).
    [Crossref]
  29. N.I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20(11), 2329–2337 (2003).
    [Crossref]
  30. G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
    [Crossref]
  31. V. Neustruev, “Colour centres in germanosilicate glass and optical fibers,” J. Phys. : Condens. Matter 6(35), 6901 (1994).
  32. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007).
    [Crossref] [PubMed]
  33. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
    [Crossref]
  34. Y. Jung, G. Brambilla, and D.J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
    [Crossref] [PubMed]
  35. T. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  36. T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
    [Crossref] [PubMed]
  37. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).
  38. S. Afshar and T.M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref]
  39. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref]
  40. M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
    [Crossref]

2015 (3)

2014 (1)

2013 (1)

2012 (3)

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Y.H. Li, Y.Y. Zhao, and L.J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Opt. Lett. 37(16) 3441–3443 (2012).
[Crossref]

2011 (1)

P.J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
[Crossref]

2010 (3)

2009 (4)

2008 (4)

2007 (2)

2005 (2)

2004 (1)

2003 (1)

2002 (2)

A. V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19(9), 2171–2182 (2002).
[Crossref]

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

2000 (2)

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb–Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000).
[Crossref]

S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
[Crossref]

1999 (1)

1998 (2)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
[Crossref]

1994 (1)

V. Neustruev, “Colour centres in germanosilicate glass and optical fibers,” J. Phys. : Condens. Matter 6(35), 6901 (1994).

1992 (1)

T. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

1991 (1)

1988 (1)

Abdul Khudus, M. I. M.

Abdul Khudus, M.I.M

Abdul Khudus, M.I.M.

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

Afshar, S.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).

Alam, S. U.

E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
[Crossref]

Alic, N.

Bang, O.

Birks, T.

T. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Bjarklev, A.

Boggio, J. C.

Boggio, J.C.

Bonfrate, G.

Brambilla, G.

Broderick, N. G.

Broderick, N.G.R.

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

Brueck, S. R. J.

Campagnola, P.J.

P.J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
[Crossref]

Canagasabey, A.

Canalias, C.

Chaitanya Kumar, S.

Champert, P. A.

Chernikov, S.V.

S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
[Crossref]

Codemard, C.A.

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

Coillet, A.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Corbari, C.

Davydov, B. L.

De Lucia, F.

De Sandro, J. P.

Di Teodorob, F.

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

Dianov, E. M.

Ding, M.

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

Dong, C.-Y.

P.J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
[Crossref]

Ebrahim-Zadeh, M.

Eguchi, N.

Fallahi, M.

Fan, L.

Fragnito, H.

Gallo, K.

Gapontsev, V. P.

Gladishev, A. V.

Gladyshev, A V.

E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
[Crossref]

Grelu, P.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Grubsky, V.

Hader, J.

Helander, P.

Hernandez, Y.

Hernandez-Figueroa, H.

Herrmann, J.

Hessenius, C.

Honda, Y.

Horak, P.

Huang, T.

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

Husakou, A. V.

Ibsen, M.

Ibsen., M.

Imai, Y.

Jonasz, M.

Jung, Y.

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

Y. Jung, G. Brambilla, and D.J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[Crossref] [PubMed]

Kaneda, Y.

Kazansky, P. G.

Kazansky, P.G.

Kitamura, R.

Kitaoka, Y.

Klinera, D. A. V.

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

Knight, J. C.

Koplowb, J. P.

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

Kubota, S.

Kuo, B.P.-P.

Lago, L.

Laurell, F.

Lee, T.

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

M.I.M Abdul Khudus, T. Lee, P. Horak, and G. Brambilla, “Effect of intrinsic surface roughness on the efficiency of intermodal phase matching in silica optical nanofibers,” Opt. Lett. 40(7), 1318–1321 (2015).
[Crossref]

M. I. M. Abdul Khudus, F. De Lucia, C. Corbari, T. Lee, P. Horak, P. Sazio, and G. Brambilla, “Phase matched parametric amplification via four-wave mixing in optical microfibers,” Opt. Lett. 41(4), 761–764 (2015).
[Crossref]

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

Levenson, J. A.

Li, L.

Li, Y.H.

Li, Y.W.

T. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Lim, E. L.

E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
[Crossref]

Margulis, W.

Masuda, H.

Mathew, M.

Meyn, J. P.

Milam, D.

Miyazono, K.

Moloney, J. V.

Monro, T.M.

Mooreb, S. W.

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

Mori, Y.

Moro, S.

Mukherjee, N.

Myers, R. A.

Myrén, N.

Neustruev, V.

V. Neustruev, “Colour centres in germanosilicate glass and optical fibers,” J. Phys. : Condens. Matter 6(35), 6901 (1994).

Nikogosyan, D. N.

Nikolov, N.I.

Nishioka, M.

Norin, L.

Olsson, H.

Österberg, U.

Oulianov, D. A.

Pasiskevicius, V.

Peyghambarian, N.

Pilon, L.

Popov, S. V.

Popov, S.V.

S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
[Crossref]

Pruneri, V.

Radic, S.

Richardson, D. J.

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. De Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24(4), 208–210 (1999).
[Crossref]

E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
[Crossref]

Richardson, D.J.

Rieznik, A.

Saito, M.

Samanta, G. K.

Samanta, G.K.

Sasaki, T.

Savchenko, A.

Sazio, P.

Shao, X.

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

Shimatani, H.

Shimizu, Y.

Shum, P.

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

Simonneau, C.

Sjödin, N.

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

Slattery, S. A.

Smith, A. V.

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

Sodre, A. C.

Sørensen, T.

Stossel, B.

Sudmeyer, T.

Svennebrink, J.

Tarasenko, O.

Taylor, J. R.

Taylor, J.R.

S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
[Crossref]

Tyrtyshnyy, V. A.

Vershinin, O. I.

Vidakovic, P.

Wang, L.J.

Yarborough, J. M.

Yoshimura, M.

Zhang, Z.

Zhao, Y.Y.

Appl. Opt. (2)

Fiber Integr. Opt. (1)

M.I.M. Abdul Khudus, T. Lee, T. Huang, X. Shao, P. Shum, and G. Brambilla, “Harmonic generation via χ3 intermodal phase matching in microfibers,” Fiber Integr. Opt. 34(1), 53–65 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239(1), 16–48 (1998).
[Crossref]

J. Opt. (1)

G. Brambilla, “Optical fiber nanowires and microwires: a review,” J. Opt. 12, 043001 (2010).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. : Condens. Matter (1)

V. Neustruev, “Colour centres in germanosilicate glass and optical fibers,” J. Phys. : Condens. Matter 6(35), 6901 (1994).

Laser Photonics Rev. (1)

P.J. Campagnola and C.-Y. Dong, “Second harmonic generation microscopy: principles and applications to disease diagnosis,” Laser Photonics Rev. 5(1), 13–26 (2011).
[Crossref]

Opt. Commun. (3)

D. A. V. Klinera, F. Di Teodorob, J. P. Koplowb, S. W. Mooreb, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3), 393–398 (2002).
[Crossref]

S.V. Popov, S.V. Chernikov, and J.R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fiber amplifier and periodically poled KTP,” Opt. Commun. 174(1) 231–234 (2000).
[Crossref]

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun. 285(16), 3493–3497 (2012).
[Crossref]

Opt. Express (9)

V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express 13(18), 6798–6806 (2005).
[Crossref] [PubMed]

A. C. Sodre, J. C. Boggio, A. Rieznik, H. Hernandez-Figueroa, H. Fragnito, and J. C. Knight, “Highly efficient generation of broadband cascaded four-wave mixing products,” Opt. Express 16(4), 2816–2828 (2008).
[Crossref]

Y. Jung, G. Brambilla, and D.J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009).
[Crossref] [PubMed]

S. Afshar and T.M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref]

T. Sudmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, “Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier,” Opt. Express 16(3), 1546–1551 (2008).
[Crossref] [PubMed]

S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17(16), 13711–13726 (2009).
[Crossref] [PubMed]

N. Myrén, H. Olsson, L. Norin, N. Sjödin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
[Crossref] [PubMed]

W. Margulis, O. Tarasenko, and N. Myrén, “Who needs a cathode? Creating a second-order nonlinearity by charging glass fiber with two anodes,” Opt. Express 17(18), 15534–15540 (2009).
[Crossref] [PubMed]

V. P. Gapontsev, V. A. Tyrtyshnyy, O. I. Vershinin, B. L. Davydov, and D. A. Oulianov, “Third harmonic frequency generation by Type-I critically phase-matched LiB3O5 crystal by means of optically active quartz crystal,” Opt. Express 21(3), 3715–3720 (2013).
[Crossref] [PubMed]

Opt. Lett. (12)

Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008).
[Crossref] [PubMed]

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb–Er-seeded fiber source,” Opt. Lett. 25(17), 1252–1254 (2000).
[Crossref]

G.K. Samanta, S. Chaitanya Kumar, M. Mathew, C. Canalias, V. Pasiskevicius, F. Laurell, and M. Ebrahim-Zadeh, “High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO4,” Opt. Lett. 33(24), 2955–2957 (2008).
[Crossref] [PubMed]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[Crossref] [PubMed]

A. Canagasabey, C. Corbari, Z. Zhang, P.G. Kazansky, and M. Ibsen., “Broadly tunable second-harmonic generation in periodically poled silica fibers,” Opt. Lett. 32(13), 1863–1865 (2007).
[Crossref] [PubMed]

A. Canagasabey, M. Ibsen, K. Gallo, A. V. Gladishev, E. M. Dianov, C. Corbari, and P. G. Kazansky, “Aperiodically poled silica fibers for bandwidth control of quasi-phase-matched second-harmonic generation,” Opt. Lett. 35(5), 724–726 (2010)
[Crossref] [PubMed]

C. Corbari, A. V. Gladishev, L. Lago, M. Ibsen, Y. Hernandez, and P. G. Kazansky, “All-fiber frequency-doubled visible laser,” Opt. Lett. 39(22), 6505–6508 (2014).
[Crossref] [PubMed]

V. Pruneri, G. Bonfrate, P. G. Kazansky, D. J. Richardson, N. G. Broderick, J. P. De Sandro, C. Simonneau, P. Vidakovic, and J. A. Levenson, “Greater than 20%-efficient frequency doubling of 1532-nm nanosecond pulses in quasi-phase-matched germanosilicate optical fibers,” Opt. Lett. 24(4), 208–210 (1999).
[Crossref]

Y.H. Li, Y.Y. Zhao, and L.J. Wang, “Demonstration of almost octave-spanning cascaded four-wave mixing in optical microfibers,” Opt. Lett. 37(16) 3441–3443 (2012).
[Crossref]

T. Lee, Y. Jung, C.A. Codemard, M. Ding, N.G.R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibers,” Opt. Lett. 20(8), 8503–8511 (2012).

M.I.M Abdul Khudus, T. Lee, P. Horak, and G. Brambilla, “Effect of intrinsic surface roughness on the efficiency of intermodal phase matching in silica optical nanofibers,” Opt. Lett. 40(7), 1318–1321 (2015).
[Crossref]

M. I. M. Abdul Khudus, F. De Lucia, C. Corbari, T. Lee, P. Horak, P. Sazio, and G. Brambilla, “Phase matched parametric amplification via four-wave mixing in optical microfibers,” Opt. Lett. 41(4), 761–764 (2015).
[Crossref]

Other (3)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2012).

E. L. Lim, C. Corbari, A V. Gladyshev, S. U. Alam, M. Ibsen, D. J. Richardson, and P. G. Kazansky, “Multi-watt all-fiber frequency doubled laser,” in Advanced Photonics, OSA Technical Digest (Optical Society of America, 2014), paper JTu6A.5.
[Crossref]

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science+Business Media, Inc, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of FWM. In general, Δω1 = Δω3 ≠ Δω2.
Fig. 2
Fig. 2 Evolution of detuning Δβ with OMF diameter for different FWM schemes for (a) FHG and (b) 5HG for the wavelengths which are considered. The diameters at which Δβ = 0 are the phase matching diameters for a particular FWM scheme.
Fig. 3
Fig. 3 FWM PMD in OMFs within the optical transmission window of silica for (a) degenerate FWM (λ2 = λ3), where λ2 is the pump wavelength and λ1 is the signal wavelength; and (b) non-degenerate FWM for a range of pumps λ2 and λ3. Here, the frequency difference is equal (Δω1 = Δω2 = Δω3). As the OMF nonlinearity decreases significantly with increasing the OMF size, d < 10 μm was chosen in order to achieve relatively high nonlinearity [30]. The left and right plots in (a) and (b) show the two possible PMDs.
Fig. 4
Fig. 4 (a) Experimental setup for UV generation in OMFs. Five amplifiers (Amp#) were employed in the MOPA chain with the pulses carved by an electro-optic modulator (EOM) and an acoustic optical modulator (AOM). Two spectral filters were employed in order to allow for an OSNR of more than 40 dB at the output. The polarization in the chain is managed by three polarization controllers (PC). PPSF designates the periodically poled silica fiber. (b) Typical output spectrum after SHG from the PPSF which is spliced to a shortpass filter with losses of > 40 dB and > 70 dB at the SH and FF wavelengths, respectively.
Fig. 5
Fig. 5 Output spectrum from the OMF1 after a shortpass filter designed to remove radiation at 1.55 μm. The signal at the third harmonic wavelength (0.517 μm) has been enhanced by the parametric amplification in OMF1 to more than −50 dBm from an initial signal of approximately −65 dBm.
Fig. 6
Fig. 6 Output spectrum from the OMF2 after a shortpass filter designed to attenuate the FF, SH and TH wavelengths. The detector is sensitive to visible light, which manifests as a broadband background signal which varies slightly as the OMF is tapered. Tests with higher powers at the SH and TH indicate that the signals at the SH and TH do not appear as narrowband radiation. (A)–(F) represent the FH and 5H signals.
Fig. 7
Fig. 7 Schematic of the tapering process in the experiment. Here, d is the diameter of the OMF, and dPMD is the phase matching diameter for FWM.
Fig. 8
Fig. 8 Calculated fraction of total power, ϒTH, at the idler (TH) wavelength (λTH = 0.517 μm) for the DFWM detailed by scheme (I) in Table 1. The power at the signal (λFF = 1.55 μm) and pump wavelengths (λSH = 0.775 μm) is set at PFF = 534 W and PSH = 400 W, respectively. Two PMDs around (a) d1 = 2.886μm and (b) d2 = 0.799 μm are used.
Fig. 9
Fig. 9 Evolution of the fraction of total power (ϒl) in the (a) FH wavelength (0.387 μm), (b) TH wavelength (0.517 μm) and (c) FF wavelength (1.550 μm) around the PMD d ≃ 1.72 μm. The total peak power (including loss) is approximately 1 kW.
Fig. 10
Fig. 10 Evolution of the fraction of total power (ϒl) in the FH wavelength (0.387 μm) around the phase matching diameter d ∼ 0.79μm for three initial power fractions, ϒSH : ϒFH, of (a) 17% : 20%, (b) 39% : 3.0% and (c) 0.6% : 33%. The total peak power (including loss) is approximately 1 kW.

Tables (1)

Tables Icon

Table 1 Phase matching diameters (PMDs) for three different FWM schemes. d1 and d2 denote two separate phase diameters

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ω 2 + ω 3 = ω 1 + ω 4
β 2 + β 3 = β 1 + β 4
Δ β = β 2 + β 3 β 1 β 4 = 0
E ˜ ( r , ω ) = v = k , l , m , n A v F v ( r , ω v ) N v e i ( β v z ω v t ) + c . c .
H ˜ ( r , ω ) = v = k , l , m , n B v G v ( r , ω v ) N v e i ( β v z ω v t ) + c . c .
N μ = 1 4 [ F μ ( r , ω ) × G μ * ( r , ω ) + F μ ( r , ω ) × G μ * ( r , ω ) ] z ^ d A
A l ( z , t ) z = α l 2 A l + γ l { Θ l | A l | 2 A l + p = m , n , k Θ l p ( 2 | A p | 2 A l ) + Θ k l m n [ 2 ( A k A n A m * ) ] e i ( β l + β m β k β n ) z }
γ i = i ( 0 μ 0 ) 2 π n ( 2 ) ( ω l ) n 2 ( ω l ) 3 λ l
Θ l = 2 | F l | 4 + | F l 2 | 2 N l 4 d S
Θ l p = | F l F p * | 2 + | F p | 2 | F l | 2 + | F l F p | 2 N l 2 N p 2 d S
Θ k l m n = ( F k F n ) ( F l * F m * ) N k N l N m N n d S

Metrics