Abstract

Mode division multiplexing (MDM) has been widely investigated in optical transmission systems and networks to improve network capacity. However, the MDM receiver is always expensive and complex because coherent detection and multiplex-input-and-multiplex-output (MIMO) digital signal processing (DSP) are required to demultiplex each spatial mode. In this paper, we investigate the application of MDM in short-reach scenarios such as datacenter networking. Two-dimensional MDM and wavelength division multiplexing node structure based on low modal-crosstalk few-mode fiber (FMF) and components is proposed, in which signal in each mode or wavelength can be independently switched. We experimentally demonstrate independent adding, dropping and switching functionalities with two linearly polarized modes and four wavelength channels over a total 11.8-km 2-mode low modal-crosstalk FMFs. The structure is simple without coherent detection or MIMO DSP. Only slight penalties of receiver sensitivity are observed for all switching operations. The influence of modal-crosstalk accumulation for cascaded switching nodes is also investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Weakly-coupled 4-mode step-index FMF and demonstration of IM/DD MDM transmission

Tao Hu, Juhao Li, Dawei Ge, Zhongying Wu, Yu Tian, Lei Shen, Yaping Liu, Su Chen, Zhengbin Li, Yongqi He, and Zhangyuan Chen
Opt. Express 26(7) 8356-8363 (2018)

Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks

Yuanxiang Chen, Juhao Li, Paikun Zhu, Zhongying Wu, Peng Zhou, Yu Tian, Fang Ren, Jinyi Yu, Dawei Ge, Jingbiao Chen, Yongqi He, and Zhangyuan Chen
Opt. Express 23(25) 32054-32062 (2015)

Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF

Yu Tian, Juhao Li, Zhongying Wu, Yuanxiang Chen, Paikun Zhu, Ruizhi Tang, Qi Mo, Yongqi He, and Zhangyuan Chen
Opt. Express 25(14) 16603-16617 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  2. A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-division multiplexed high-speed superchannel transmission over few-mode fiber,” J. Lightwave Technol. 30(24), 3953–3964 (2012).
    [Crossref]
  3. D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  4. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
    [Crossref]
  5. Y. Chen, A. Lobato, Y. Jung, H. Chen, V. A. J. M. Sleiffer, M. Kuschnerov, N. K. Fontaine, R. Ryf, D. J. Richardson, B. Lankl, and N. Hanik, “41.6 Tbit/s C-Band SDM OFDM Transmission Through 12 Spatial and Polarization Modes Over 74.17-km Few Mode Fiber,” J. Lightwave Technol. 33(7), 1440–1444 (2015).
    [Crossref]
  6. P. J. Winzer and G. J. Foschini, “MIMO capacities and outage probabilities in spatially multiplexed optical transport systems,” Opt. Express 19(17), 16680–16696 (2011).
    [Crossref] [PubMed]
  7. R. Ryf, H. Chen, N. K. Fontaine, A. M. Velázquez-Benítez, and C. José Antonio-López, Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard,and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in European Conference on Optical Communication (2015), paper PDP 3.3.
  8. A. Turukhin, O. V. Sinkin, H. Batshon, H. Zhang, Y. Sun, M. Mazurczyk, C. R. Davidson, J.-X. Cai, M. A. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “105.1 Tb/s Power-Efficient Transmission over 14,350 km using a 12-Core Fiber,” in Optical Fiber Communication Conference (OSA, 2016), paper Th4C.1.
    [Crossref]
  9. N. P. Diamantopoulos, M. Hayashi, Y. Yoshida, A. Maruta, R. Maruyama, N. Kuwaki, K. Takenaga, H. Uemura, S. Matsuo, and K. Kitayama, “Mode-selective optical packet switching in mode-division multiplexing networks,” Opt. Express 23(18), 23660–23666 (2015).
    [Crossref] [PubMed]
  10. B. Franz and H. Bülow, “Experimental Evaluation of Principal Mode Groupsas High-Speed Transmission Channelsin Spatial Multiplex Systems,” IEEE Photonics Technol. Lett. 24(16), 1363–1365 (2012).
    [Crossref]
  11. G. Labroille, P. Jian, L. Garcia, J. B. Trinel, R. Kassi, L. Bigot, and J. F. Morizur, “30 Gbit/s Transmission over 1 km of Conventional Multi-mode Fiber using Mode Group Multiplexing with OOK modulation and direct detection,” in European Conference on Optical Communication (2015), paper 0518.
    [Crossref]
  12. X. Chen, A. Li, J. Ye, A. Al Amin, and W. Shieh, “Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer,” Opt. Express 20(13), 14302–14307 (2012).
    [Crossref] [PubMed]
  13. N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R.-J. Essiambre, Y.-m. Jung, Q. Kang, J. K. Sahu, S.-U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration,” in Optical Fiber Communication Conference (OSA, 2015), paper Th5C.5.
    [Crossref]
  14. J. Carpenter, S. G. Leon-Saval, J. R. Salazar-Gil, J. Bland-Hawthorn, G. Baxter, L. Stewart, S. Frisken, M. A. F. Roelens, B. J. Eggleton, and J. Schröder, “1x11 few-mode fiber wavelength selective switch using photonic lanterns,” Opt. Express 22(3), 2216–2221 (2014).
    [Crossref] [PubMed]
  15. J. Gong, J. Xu, M. Luo, X. Li, Y. Qiu, Q. Yang, X. Zhang, and S. Yu, “All-optical wavelength conversion for mode division multiplexed superchannels,” Opt. Express 24(8), 8926–8939 (2016).
    [Crossref] [PubMed]
  16. E. Ip, N. Cvijetic, and T. Wang, “Spatial light modulator-based few-mode fiber switches for space-division multiplexing applications,” in European Conference on Optical Communication (2013), paper 702–704.
    [Crossref]
  17. F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
    [Crossref]
  18. J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, and D. Liu, “Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission,” Opt. Lett. 41(13), 3058–3061 (2016).
    [Crossref] [PubMed]
  19. T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
    [Crossref]
  20. D. Ge, J. Li, Z. Wu, F. Ren, and P. Zhu. Q. Mo, Z. Li, Z. Chen, and Y. He, “Experimental Demonstration of ROADM Functionalities for Hybrid MDM-WDM Optical Networks” in Optical Fiber Communication Conference (OSA, 2016), paper W2A.47.

2016 (3)

2015 (3)

2014 (2)

2013 (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

Al Amin, A.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Baxter, G.

Bland-Hawthorn, J.

Bülow, H.

B. Franz and H. Bülow, “Experimental Evaluation of Principal Mode Groupsas High-Speed Transmission Channelsin Spatial Multiplex Systems,” IEEE Photonics Technol. Lett. 24(16), 1363–1365 (2012).
[Crossref]

Carpenter, J.

Chen, H.

Chen, X.

Chen, Y.

Chen, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Diamantopoulos, N. P.

Du, C.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Eggleton, B. J.

Essiambre, R. J.

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Fontaine, N. K.

Foschini, G. J.

Franz, B.

B. Franz and H. Bülow, “Experimental Evaluation of Principal Mode Groupsas High-Speed Transmission Channelsin Spatial Multiplex Systems,” IEEE Photonics Technol. Lett. 24(16), 1363–1365 (2012).
[Crossref]

Frisken, S.

Fu, S.

Goebel, B.

Gong, J.

Hanik, N.

Hayashi, M.

He, Y.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Hu, T.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Jung, Y.

Ke, Y.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Kitayama, K.

Kramer, G.

Kuschnerov, M.

Kuwaki, N.

Lankl, B.

Leon-Saval, S. G.

Li, A.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Li, J.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Li, X.

Li, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Liang, J.

Liu, D.

Liu, Z.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

Lobato, A.

Luo, M.

Maruta, A.

Maruyama, R.

Matsuo, S.

Mo, Q.

J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, and D. Liu, “Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission,” Opt. Lett. 41(13), 3058–3061 (2016).
[Crossref] [PubMed]

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Qiu, Y.

Ren, F.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Richardson, D. J.

Roelens, M. A. F.

Ryf, R.

Salazar-Gil, J. R.

Schröder, J.

Shieh, W.

Shum, P.

Sleiffer, V. A. J. M.

Stewart, L.

Takenaga, K.

Tang, M.

Tang, R.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Uemura, H.

Winzer, P. J.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Xu, J.

Yang, Q.

Ye, J.

Yoshida, Y.

Yu, J.

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

Yu, S.

Zhang, X.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6(4), 413–487 (2014).
[Crossref]

IEEE Photonics J. (1)

F. Ren, J. Li, T. Hu, R. Tang, J. Yu, Q. Mo, Y. He, Z. Chen, and Z. Li, “Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX,” IEEE Photonics J. 7(5), 7903059 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Hu, J. Li, F. Ren, R. Tang, J. Yu, Q. Mo, Y. Ke, C. Du, Z. Liu, Y. He, Z. Li, and Z. Chen, “Demonstration of Bidirectional PON based on Mode Division Multiplexing,” IEEE Photonics Technol. Lett. 28(11), 1201–1204 (2016).
[Crossref]

B. Franz and H. Bülow, “Experimental Evaluation of Principal Mode Groupsas High-Speed Transmission Channelsin Spatial Multiplex Systems,” IEEE Photonics Technol. Lett. 24(16), 1363–1365 (2012).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photonics (1)

D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Other (6)

D. Ge, J. Li, Z. Wu, F. Ren, and P. Zhu. Q. Mo, Z. Li, Z. Chen, and Y. He, “Experimental Demonstration of ROADM Functionalities for Hybrid MDM-WDM Optical Networks” in Optical Fiber Communication Conference (OSA, 2016), paper W2A.47.

E. Ip, N. Cvijetic, and T. Wang, “Spatial light modulator-based few-mode fiber switches for space-division multiplexing applications,” in European Conference on Optical Communication (2013), paper 702–704.
[Crossref]

N. K. Fontaine, T. Haramaty, R. Ryf, H. Chen, L. Miron, L. Pascar, M. Blau, B. Frenkel, L. Wang, Y. Messaddeq, S. LaRochelle, R.-J. Essiambre, Y.-m. Jung, Q. Kang, J. K. Sahu, S.-U. Alam, D. J. Richardson, and D. M. Marom, “Heterogeneous Space-Division Multiplexing and Joint Wavelength Switching Demonstration,” in Optical Fiber Communication Conference (OSA, 2015), paper Th5C.5.
[Crossref]

R. Ryf, H. Chen, N. K. Fontaine, A. M. Velázquez-Benítez, and C. José Antonio-López, Jin, B. Huang, M. Bigot-Astruc, D. Molin, F. Achten, P. Sillard,and R. Amezcua-Correa, “10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber,” in European Conference on Optical Communication (2015), paper PDP 3.3.

A. Turukhin, O. V. Sinkin, H. Batshon, H. Zhang, Y. Sun, M. Mazurczyk, C. R. Davidson, J.-X. Cai, M. A. Bolshtyansky, D. G. Foursa, and A. Pilipetskii, “105.1 Tb/s Power-Efficient Transmission over 14,350 km using a 12-Core Fiber,” in Optical Fiber Communication Conference (OSA, 2016), paper Th4C.1.
[Crossref]

G. Labroille, P. Jian, L. Garcia, J. B. Trinel, R. Kassi, L. Bigot, and J. F. Morizur, “30 Gbit/s Transmission over 1 km of Conventional Multi-mode Fiber using Mode Group Multiplexing with OOK modulation and direct detection,” in European Conference on Optical Communication (2015), paper 0518.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The schematic structure of proposed MDM/WDM switching node. N is the number of the FMF input/output ports. M represents the spatial modes that the FMF and mode MUX/DEMUX could support. K is number of output (input) ports of the WSS (OC). The relationship between N, M, and K is K = N × M + 1.
Fig. 2
Fig. 2 Experimental setup. The insets show the mode patterns of the signals at point A and B in different switching scenarios. LD: laser diode; PM-OC: polarization maintaining optical coupler; MZM: Mach-Zehnder modulator; PPG: pulse pattern generator; EDFA: erbium doped optical fiber amplifier; SMF: single-mode fiber; Mode MUX/DEMUX: mode multiplexer/ demultiplexer; FMF: few-mode fiber; VOA: variable optical attenuator; PD: photodiode; BERT: bit error ratio tester; MS: mode switching.
Fig. 3
Fig. 3 The optical spectra of the signals at point a~f in Fig. 2. Inset a: The WDM signal after mode demultiplexing; Inset b: The signals at λ1 and λ2 without MS operations; Inset c: The dropped signal at λ3; Inset d: The inter-mode switched signals at λ4 from LP11 mode; Inset e: The added signal at λ3; Inset f: The combined WDM signal after adding, dropping and switching operations.
Fig. 4
Fig. 4 (a) The BER performance and (b) eye diagrams of 10-Gb/s OOK signals after passing through the switching node without MS operations and transmission over 11.8-km FMF.
Fig. 5
Fig. 5 (a) The BER performance and (b) eye diagrams of 10-Gb/s OOK signals at λ3 for the signals after adding and dropping operations. The signals without MS operations are also shown as reference.
Fig. 6
Fig. 6 (a) The BER performance and (b) eye diagrams of 10-Gb/s OOK signals at λ4 after inter-MS operation and 11.8-km FMF transmission.
Fig. 7
Fig. 7 Experimental setup of MDM signals passing through cascaded switching nodes.
Fig. 8
Fig. 8 The Q-factors of signal in LP01 and LP11 modes after passing through different number of switching nodes. The black and blue inset figures show the Q-factor difference between the LP01 mode and LP11 mode when they are transmitted together with inter-MS and without inter-MS.
Fig. 9
Fig. 9 The eye diagrams of signals in LP01 and LP11 modes after passing through four switching nodes in the scenario (a) LP01 and LP11 modes separate transmission, LP01 and LP11 modes simultaneous transmission (b) with inter-MS and (c) without inter-MS.

Metrics