Abstract

We report the observation of an anomalous polarization dependent process in an isotropic glass induced by long time stationary irradiation of a high repetition rate near-infrared femtosecond laser. Two distinctive types of polarization dependent microstructures were induced at different irradiation stages. At early stage (a few seconds), a dumbbell-shaped structure elongated perpendicularly to the laser polarization formed at the top of the modified region, which was later erased by further irradiation. At later stage (above 30 s), bubbles filled with O2 formed by the irradiation, which were distributed along the laser polarization at a distance far beyond the radius of the laser beam. Based on a simple modeling of light reflection on boundaries, a thermal accumulation process was proposed to explain the formation and evolution of the dumbbell-shaped microstructure. The possible factors responsible for polarization dependent distribution of bubbles are discussed, which needs further systematic investigations. The results may be helpful in the development of femtosecond laser microprocessing for various applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser

Fangfang Luo, Bin Qian, Geng Lin, Jian Xu, Yang Liao, Juan Song, Haiyi Sun, Bin Zhu, Jianrong Qiu, Quanzhong Zhao, and Zhizhan Xu
Opt. Express 18(6) 6262-6269 (2010)

Space-selective precipitation of ZnO crystals in glass by using high repetition rate femtosecond laser irradiation

Xi Du, Hang Zhang, Chen Cheng, Shifeng Zhou, Fangteng Zhang, Yongze Yu, Guoping Dong, and Jianrong Qiu
Opt. Express 22(15) 17908-17914 (2014)

Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates

Masahiro Shimizu, Masaaki Sakakura, Masatoshi Ohnishi, Masahiro Yamaji, Yasuhiko Shimotsuma, Kazuyuki Hirao, and Kiyotaka Miura
Opt. Express 20(2) 934-940 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
    [Crossref] [PubMed]
  3. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  4. V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
    [Crossref] [PubMed]
  5. Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
    [Crossref] [PubMed]
  6. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
    [Crossref]
  7. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
    [Crossref] [PubMed]
  8. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
    [Crossref] [PubMed]
  9. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref] [PubMed]
  10. J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
    [Crossref] [PubMed]
  11. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
    [Crossref]
  12. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  13. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  14. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [Crossref] [PubMed]
  15. Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
    [Crossref]
  16. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
    [Crossref] [PubMed]
  17. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  18. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
    [Crossref]
  19. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  20. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
    [Crossref]
  21. M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
    [Crossref] [PubMed]
  22. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  23. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [Crossref] [PubMed]
  24. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
    [Crossref]
  25. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
    [Crossref]
  26. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
    [Crossref] [PubMed]
  27. B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. C. Poulin, “Asymmetric Orientational Writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
    [Crossref]
  28. P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
    [Crossref] [PubMed]
  29. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
    [Crossref]
  30. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
    [Crossref] [PubMed]
  31. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
    [Crossref]
  32. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
    [Crossref]
  33. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
    [Crossref]
  34. Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
    [Crossref] [PubMed]
  35. T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
    [Crossref]
  36. F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).
  37. P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
    [Crossref]
  38. G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
    [Crossref]
  39. L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10), 2093–2096 (1996).
    [Crossref] [PubMed]
  40. P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
    [Crossref]
  41. A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4(1), 195–200 (1960).
    [Crossref]
  42. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
    [Crossref] [PubMed]
  43. T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013).
    [Crossref] [PubMed]
  44. I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
    [Crossref] [PubMed]
  45. O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
    [Crossref]
  46. T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
    [Crossref]
  47. S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
    [Crossref] [PubMed]
  48. E. Hecht, Optics 2nd edition (Addison-Wesley, 1987).
  49. G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
    [Crossref]
  50. K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
    [Crossref] [PubMed]
  51. P. K. Weissenborn and R. J. Pugh, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence,” J. Colloid Interface Sci. 184(2), 550–563 (1996).
    [Crossref] [PubMed]
  52. W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10(14), 603–608 (2002).
    [Crossref] [PubMed]
  53. R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4(9), 1740–1744 (2008).
    [Crossref]

2015 (4)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

2014 (2)

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

2013 (6)

2011 (5)

2010 (3)

2009 (1)

2008 (7)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4(9), 1740–1744 (2008).
[Crossref]

2007 (2)

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

2006 (1)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2005 (4)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

2003 (3)

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (2)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10(14), 603–608 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

1999 (1)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

1996 (3)

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref] [PubMed]

P. K. Weissenborn and R. J. Pugh, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence,” J. Colloid Interface Sci. 184(2), 550–563 (1996).
[Crossref] [PubMed]

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10), 2093–2096 (1996).
[Crossref] [PubMed]

1983 (1)

G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
[Crossref]

1982 (2)

F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).

P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
[Crossref]

1973 (1)

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

1960 (1)

A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4(1), 195–200 (1960).
[Crossref]

Adams, D. E.

Akturk, S.

Arai, A.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Backus, S.

Bado, P.

Bellouard, Y.

Beresna, M.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Block, E.

Bourgeade, A.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Bovatsek, J.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Bricchi, E.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. C. Poulin, “Asymmetric Orientational Writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

Burmeister, F.

Callan, J. P.

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Caulier, O. D.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Chen, D.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Chimier, B.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Cvecek, K.

Dai, Y.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

del Hoyo, J.

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

Desmarchelier, R.

Domingo, C.

Döring, S.

Duchateau, G.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Durfee, C. G.

Eaton, S.

Fan, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Fernandez, P.

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013).
[Crossref] [PubMed]

Fernandez, T.

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

Fernandez, T. T.

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

Finlay, R. J.

Franco, M.

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

Glezer, E. N.

Gottmann, J.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Grenier, J. R.

Güttler, B.

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10), 2093–2096 (1996).
[Crossref] [PubMed]

Haro-González, P.

Hathaway, C. E.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

He, F.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Her, T. H.

Herman, P.

Herman, P. R.

Hernandez, M.

Hervé, E.

Hirao, K.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ho, S.

Hongler, M. O.

Hönninger, C.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Horn, A.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Hoyo, J.

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

Hu, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Huang, L.

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Itoh, K.

Jaque, D.

Jiang, X.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
[Crossref] [PubMed]

Kanehira, S.

Kazansky, P.

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Kazansky, P. G.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Kleinfeld, D.

Kling, R.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

König, K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. C. Poulin, “Asymmetric Orientational Writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

Léger, C. J.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Liao, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

Lin, G.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Liu, C.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

Lopez, J.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Lucovsky, G.

G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
[Crossref]

Luo, F.

Ma, H.

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

Marcinkevicius, A.

Maselli, V.

Matsuo, S.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[Crossref] [PubMed]

McGinnis, E. A.

A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4(1), 195–200 (1960).
[Crossref]

McMillan, P.

P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
[Crossref]

Midorikawa, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Milosavljevic, M.

Misawa, H.

Mishchik, K.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Mitsuyu, T.

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Miura, K.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[Crossref] [PubMed]

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Miwa, M.

Miyamoto, I.

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Mysen, B. O.

F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).

Mysyrowicz, A.

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Navrotsky, A. A.

P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
[Crossref]

Nishi, M.

Nishii, J.

Nolte, S.

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

Pan, H.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Piazza, R.

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4(9), 1740–1744 (2008).
[Crossref]

Piriou, B.

P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
[Crossref]

Pollard, W. B.

G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
[Crossref]

Poulin, J. C.

B. Poumellec, M. Lancry, R. Desmarchelier, E. Hervé, F. Brisset, and J. C. Poulin, “Asymmetric Orientational Writing in glass with femtosecond laser irradiation,” Opt. Mater. Express 3(10), 1586–1599 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

Prade, B.

Pugh, R. J.

P. K. Weissenborn and R. J. Pugh, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence,” J. Colloid Interface Sci. 184(2), 550–563 (1996).
[Crossref] [PubMed]

Qian, B.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Qiu, J.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Richter, S.

Rode, A. V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Said, A.

Sakakura, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[Crossref] [PubMed]

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schmidt, M.

Seifert, F. A.

F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).

Shah, L.

Shen, Y.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Shimizu, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

Shimotsuma, Y.

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36(11), 2161–2163 (2011).
[Crossref] [PubMed]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Siegel, J.

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013).
[Crossref] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Skuja, L.

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10), 2093–2096 (1996).
[Crossref] [PubMed]

Skupin, S.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Solis, J.

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013).
[Crossref] [PubMed]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Sotillo, B.

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

T. Toney Fernandez, P. Haro-González, B. Sotillo, M. Hernandez, D. Jaque, P. Fernandez, C. Domingo, J. Siegel, and J. Solis, “Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass,” Opt. Lett. 38(24), 5248–5251 (2013).
[Crossref] [PubMed]

Squier, J. A.

Starrost, F.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Sudrie, L.

Sugioka, K.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Sun, H.

Svirko, Y.

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Temple, P. A.

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

Terazima, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

Tikhonchuk, V.

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Tirlapur, U. K.

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Toney Fernandez, T.

Tünnermann, A.

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Valles, J. A.

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

Vazquez, R. M.

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

Virgo, D.

F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).

Vitek, D. N.

Wang, L.

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Wang, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Watanabe, M.

Watanabe, W.

Weber, A.

A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4(1), 195–200 (1960).
[Crossref]

Wei, X.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Weissenborn, P. K.

P. K. Weissenborn and R. J. Pugh, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence,” J. Colloid Interface Sci. 184(2), 550–563 (1996).
[Crossref] [PubMed]

Wong, C. K.

G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
[Crossref]

Wortmann, D.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

Xu, J.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Xu, Z.

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

Yoshino, F.

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

Zhang, L.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Zhao, Q.

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

Zhu, B.

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

Zimmermann, F.

Am. Mineral. (1)

F. A. Seifert, B. O. Mysen, and D. Virgo, “Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4,” Am. Mineral. 67(7–8), 696–717 (1982).

Appl. Phys. Lett. (7)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93(23), 231112 (2008).
[Crossref]

P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, ““Quill” writing with ultrashort light pulses in transparent materials,” Appl. Phys. Lett. 90(15), 151120 (2007).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71(23), 3329–3331 (1997).
[Crossref]

Y. Liu, B. Zhu, L. Wang, J. Qiu, Y. Dai, and H. Ma, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92(12), 121113 (2008).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Appl. Phys. Lett. 93(17), 171109 (2008).
[Crossref]

O. D. Caulier, K. Mishchik, B. Chimier, S. Skupin, A. Bourgeade, C. J. Léger, R. Kling, C. Hönninger, J. Lopez, V. Tikhonchuk, and G. Duchateau, “Femtosecond laser pulse train interaction with dielectric materials,” Appl. Phys. Lett. 107(18), 181110 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Geochim. Cosmochim. Acta 1982 (1)

P. McMillan, B. Piriou, and A. A. Navrotsky, “Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate,” Geochim. Cosmochim. Acta 1982 46(11), 2021–2037 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. T. Fernandez, B. Sotillo, J. del Hoyo, J. A. Valles, R. M. Vazquez, P. Fernandez, and J. Solis, “Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides,” IEEE Photonics Technol. Lett. 27(10), 1068–1071 (2015).
[Crossref]

J. Appl. Phys. (1)

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108(7), 073533 (2010).
[Crossref]

J. Colloid Interface Sci. (1)

P. K. Weissenborn and R. J. Pugh, “Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence,” J. Colloid Interface Sci. 184(2), 550–563 (1996).
[Crossref] [PubMed]

J. Laser Micro Nanoeng. (1)

I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro Nanoeng. 2(1), 57–63 (2007).
[Crossref]

J. Mol. Spectrosc. (1)

A. Weber and E. A. McGinnis, “The Raman spectrum of gaseous oxygen,” J. Mol. Spectrosc. 4(1), 195–200 (1960).
[Crossref]

J. Non-Cryst. Solids (1)

G. Lucovsky, C. K. Wong, and W. B. Pollard, “Vibrational properties of glasses: intermediate range order,” J. Non-Cryst. Solids 59, 839–846 (1983).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. Fernandez, J. Siegel, J. Hoyo, B. Sotillo, P. Fernandez, and J. Solis, “Controlling plasma distributions as driving forces for ion migration during fs laser writing,” J. Phys. D Appl. Phys. 48(15), 155101 (2015).
[Crossref]

Lab Chip (1)

Y. Liao, Y. Cheng, C. Liu, J. Song, F. He, Y. Shen, D. Chen, Z. Xu, Z. Fan, X. Wei, K. Sugioka, and K. Midorikawa, “Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration,” Lab Chip 13(8), 1626–1631 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Mater. Lett. (1)

G. Lin, H. Pan, Y. Dai, F. He, D. Chen, Y. Cheng, X. Jiang, L. Zhang, J. Qiu, and Q. Zhao, “Formation of Si nanocrystals in glass by femtosecond laser micromachining,” Mater. Lett. 65(23), 3544–3547 (2011).
[Crossref]

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, “Evidence of superdense aluminium synthesized by ultrafast microexplosion,” Nat. Commun. 2, 445 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2(2), 99–104 (2008).
[Crossref]

Nature (1)

U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002).
[Crossref] [PubMed]

Opt. Express (12)

V. Maselli, J. R. Grenier, S. Ho, and P. R. Herman, “Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel,” Opt. Express 17(14), 11719–11729 (2009).
[Crossref] [PubMed]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13(17), 6635–6644 (2005).
[Crossref] [PubMed]

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010).
[Crossref] [PubMed]

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
[Crossref] [PubMed]

P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19(21), 20657–20664 (2011).
[Crossref] [PubMed]

K. Cvecek, I. Miyamoto, and M. Schmidt, “Gas bubble formation in fused silica generated by ultra-short laser pulses,” Opt. Express 22(13), 15877–15893 (2014).
[Crossref] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[Crossref] [PubMed]

W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10(14), 603–608 (2002).
[Crossref] [PubMed]

I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).
[Crossref] [PubMed]

S. Richter, S. Döring, F. Burmeister, F. Zimmermann, A. Tünnermann, and S. Nolte, “Formation of periodic disruptions induced by heat accumulation of femtosecond laser pulses,” Opt. Express 21(13), 15452–15463 (2013).
[Crossref] [PubMed]

Y. Bellouard and M. O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express 19(7), 6807–6821 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. B (2)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[Crossref]

P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Phys. Rev. B 7(8), 3685–3697 (1973).
[Crossref]

Phys. Rev. Lett. (5)

L. Skuja and B. Güttler, “Detection of interstitial oxygen molecules in SiO2 glass by a direct photoexcitation of the infrared luminescence of singlet O2,” Phys. Rev. Lett. 77(10), 2093–2096 (1996).
[Crossref] [PubMed]

J. Zhang, M. Gecevičius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett. 112(3), 033901 (2014).
[Crossref] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao, and F. Starrost, “Anomalous anisotropic light scattering in Ge-doped silica glass,” Phys. Rev. Lett. 82(10), 2199–2202 (1999).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5, 8072 (2015).
[Crossref] [PubMed]

Soft Matter (1)

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4(9), 1740–1744 (2008).
[Crossref]

Other (1)

E. Hecht, Optics 2nd edition (Addison-Wesley, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmitted light optical microscope images of modified regions irradiated for different time (top view). Blue arrow indicates the orientation of irradiating laser polarization.
Fig. 2
Fig. 2 Transmitted light optical microscope images of modified regions irradiated for various times (side view).
Fig. 3
Fig. 3 Optical microscope images of modified regions irradiated for 2s (a) and 50s (b) time (top view). Laser propagation direction is normal to XY plane, laser polarization direction is illustrated in (a).
Fig. 4
Fig. 4 Raman spectra of the glass matrix and different locations of laser modified regions irradiated for various times. Insert shows the corresponding locations.
Fig. 5
Fig. 5 EPMA mapping of distribution of different ions in the section plane of laser modified region.
Fig. 6
Fig. 6 (a) The schematic illustration of cross-section of the modification and section I formation. (b) Calculated reflection distribution of light at boundary between outer region and sectionIwith ring-distributed darkening.

Metrics