Abstract

Time-domain spectroscopy is used to probe the polarization dependence of the terahertz-frequency absorption of α-lactose molecules in the near-field vicinity of a sub-wavelength-scale metal slit. The experimental result finds that the 0.53-THz absorption of this material has an unexpected polarization dependence, strongly coupled to the slit orientation; in particular, the electric wave in parallel polarization exhibits even complete vanishing of the otherwise resonant strong absorption. The physics behind this phenomena may be explained based on the Bethe’s sub-wavelength diffraction: the electric field that is measured in the far field, but diffracted from a sub-wavelength-scale metal aperture, originates from solely magnetic dipole radiation and not from the electric dipole radiation, thus showing no electrically-coupled material response.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Young’s experiment with a double slit of sub-wavelength dimensions

Kanghee Lee, Jongseok Lim, and Jaewook Ahn
Opt. Express 21(16) 18805-18811 (2013)

Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. M. Planken
Opt. Express 16(10) 7407-7417 (2008)

Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim
Opt. Express 15(19) 11781-11789 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2008).
  3. G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
    [Crossref]
  4. I. Brener, D. Dykaar, A. Frommer, L. N. Pfeiffer, J. Lopata, J. Wynn, K. West, and M. C. Nuss, “Terahertz emission from electric field singularities in biased semiconductors,” Opt. Lett. 21, 1924–1926 (1996).
    [Crossref] [PubMed]
  5. M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
    [Crossref]
  6. M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
    [Crossref]
  7. J. Knab, A. Adam, M. Nagel, E. Shaner, M. Seo, D. Kim, and P. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
    [Crossref] [PubMed]
  8. J. Knab, A. Adam, E. Shaner, H. Starmans, and P. Planken, “Terahertz near-field spectroscopy of filled subwavelength sized apertures in thin metal films,” Opt. Express 21, 1101–1112 (2013).
    [Crossref] [PubMed]
  9. M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
    [Crossref]
  10. H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
    [Crossref] [PubMed]
  11. C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [Crossref] [PubMed]
  12. J.-H. Kang, D. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
    [Crossref] [PubMed]
  13. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36, 2498–2500 (2011).
    [Crossref] [PubMed]
  14. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. Alkemade, G. W. t Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express 19, 24219–24227 (2011).
    [Crossref] [PubMed]
  15. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
    [Crossref]
  16. C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).
  17. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [Crossref] [PubMed]
  18. C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
    [Crossref]
  19. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
    [Crossref] [PubMed]
  20. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
    [Crossref] [PubMed]
  21. K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett. 38, 166–168 (2013).
    [Crossref] [PubMed]
  22. K. Lee, J. Lim, and J. Ahn, “Young’s experiment with a double slit of sub-wavelength dimensions,” Opt. Express 21, 18805–18811 (2013).
    [Crossref] [PubMed]
  23. E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
    [Crossref]
  24. A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
    [Crossref]
  25. D. Han, K. Lee, J. Lim, S. S. Hong, Y. K. Kim, and J. Ahn, “Terahertz lens made out of natural stone,” Appl. Opt. 52, 8670–8675 (2013).
    [Crossref]
  26. P. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [Crossref]
  27. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
    [Crossref] [PubMed]
  28. Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
    [Crossref]
  29. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  30. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, 1975).
  31. D. Han, “Lattice vibrations of mineral and polarization dependence of material in a slit using terahertz waves,” Ph. D. Thesis, KAIST (2016).
  32. A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
    [Crossref]
  33. J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill Book Company, New York, 2007).

2013 (5)

2012 (1)

M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
[Crossref]

2011 (2)

2010 (2)

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

2009 (3)

J.-H. Kang, D. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

J. Knab, A. Adam, M. Nagel, E. Shaner, M. Seo, D. Kim, and P. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
[Crossref] [PubMed]

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

2007 (4)

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express 15, 4335–4350 (2007).
[Crossref] [PubMed]

2006 (1)

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[Crossref]

2003 (2)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
[Crossref]

2002 (1)

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[Crossref] [PubMed]

2001 (2)

2000 (1)

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
[Crossref]

1996 (1)

1950 (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Adam, A.

Ahn, J.

K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett. 38, 166–168 (2013).
[Crossref] [PubMed]

K. Lee, J. Lim, and J. Ahn, “Young’s experiment with a double slit of sub-wavelength dimensions,” Opt. Express 21, 18805–18811 (2013).
[Crossref] [PubMed]

D. Han, K. Lee, J. Lim, S. S. Hong, Y. K. Kim, and J. Ahn, “Terahertz lens made out of natural stone,” Appl. Opt. 52, 8670–8675 (2013).
[Crossref]

M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
[Crossref]

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Ahn, K. J.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Alkemade, P. F.

Bahk, Y.-M.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Bakker, H. J.

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Bjarnason, J.

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Bosman, J.

Bouwkamp, C. J.

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

Brener, I.

Brown, E.

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

CámaraMayorga, I.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Chimento, P. F.

Choi, S.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Crozier, K. B.

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Du, C.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[Crossref]

Dykaar, D.

Ebbesen, T.

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Eliel, E. R.

Fedor, A.

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, 1975).

Frommer, A.

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

Grüninger, M

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Han, D.

D. Han, K. Lee, J. Lim, S. S. Hong, Y. K. Kim, and J. Ahn, “Terahertz lens made out of natural stone,” Appl. Opt. 52, 8670–8675 (2013).
[Crossref]

D. Han, “Lattice vibrations of mineral and polarization dependence of material in a slit using terahertz waves,” Ph. D. Thesis, KAIST (2016).

Han, H.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Han, J. K.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Han, S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Hangyo, M.

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
[Crossref]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Hofmeister, A. M.

A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
[Crossref]

Hong, S. S.

Hooft, G. W. t

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

Jeong, Y. U.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Kang, J.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Kang, J.-H.

J.-H. Kang, D. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

Keppel, E.

A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
[Crossref]

Khoo, E. H.

Kim, D.

Kim, D.-S.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

Kim, Y. H.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Kim, Y. K.

Knab, J.

Koch, M.

Koo, S.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Korter, T.

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Kuzmin, N. V.

Lee, K.

Lee, Y.-S.

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2008).

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Li, E. P.

Lim, J.

Lopata, J.

Luo, X.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

Nagel, M.

Nienhuys, H.-K.

Nuss, M. C.

Park, D.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Park, G.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Park, G.-S.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Park, H.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Park, H.-R.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Park, N.

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Park, Q.-H.

J.-H. Kang, D. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

Park, S. E.

Park, W.-Y.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Pfeiffer, L. N.

Planken, P.

Pupeza, I.

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Sambles, J. R.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[Crossref] [PubMed]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Seo, M.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

J. Knab, A. Adam, M. Nagel, E. Shaner, M. Seo, D. Kim, and P. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
[Crossref] [PubMed]

Shaner, E.

Son, J.-H.

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

Song, J.-D.

M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
[Crossref]

Speck, A. K.

A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
[Crossref]

Starmans, H.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill Book Company, New York, 2007).

Suwal, O.

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
[Crossref]

Wang, C.

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[Crossref]

Wenckebach, T.

West, K.

Wilk, R.

Wynn, J.

Yamashita, M.

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
[Crossref]

Yang, F.

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[Crossref] [PubMed]

Yee, D.-S.

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

Yi, M.

K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett. 38, 166–168 (2013).
[Crossref] [PubMed]

M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
[Crossref]

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Brown, J. Bjarnason, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

M. Yi, K. Lee, J.-D. Song, and J. Ahn, “Terahertz phase microscopy in the sub-wavelength regime,” Appl. Phys. Lett. 100, 161110 (2012).
[Crossref]

J. Appl. Phys. (1)

M. Tonouchi, M. Yamashita, and M. Hangyo, “Terahertz radiation imaging of supercurrent distribution in vortex-penetrated YBa2Cu3O7−δ thin film strips,” J. Appl. Phys. 87, 7366–7375 (2000).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Mon. Not. R. Astron. Soc. (1)

A. M. Hofmeister, E. Keppel, and A. K. Speck, “Absorption and reflection infrared spectra of MgO and other diatomic compounds,” Mon. Not. R. Astron. Soc. 345, 16 (2003).
[Crossref]

Nano Lett. (1)

H.-R. Park, K. J. Ahn, S. Han, Y.-M. Bahk, N. Park, and D.-S. Kim, “Colossal absorption of molecules inside single terahertz nanoantennas,” Nano Lett. 13, 1782–1786 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009).
[Crossref]

Nature (1)

C. Genet and T. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. CámaraMayorga, J. Hemberger, R. Güsten, and M Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Philips Res. Rep. (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[Crossref]

Phys. Rev. B (1)

C. Wang, C. Du, and X. Luo, “Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film,” Phys. Rev. B 74, 245403 (2006).
[Crossref]

Phys. Rev. Lett. (4)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001).
[Crossref] [PubMed]

F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002).
[Crossref] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[Crossref] [PubMed]

J.-H. Kang, D. Kim, and Q.-H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102, 093906 (2009).
[Crossref] [PubMed]

Other (6)

Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2008).

G.-S. Park, Y. H. Kim, H. Han, J. K. Han, J. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems (Springer, New York, 2012).
[Crossref]

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover, New York, 1975).

D. Han, “Lattice vibrations of mineral and polarization dependence of material in a slit using terahertz waves,” Ph. D. Thesis, KAIST (2016).

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill Book Company, New York, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic experimental setup, where a sub-wavelength-scale slit was placed at the focus of THz wave. The inset shows the polarization angle, defined with respect to the slit orientation, which is either θ = 0 or θ = π/2, when the slit direction is along the slit length of L. (b) The geometry of the fabricated sample, in the side and front views: the sample has a pair of wedge-shaped slits, one for reference signal and the other for the material, and a large rectangular hole for calibration of the material thickness. Each slit has a width of d, varied from 5 to 30 µm, and a length of L = 20 µm. The slits are fabricated with a 500-nm-thick copper film deposited on a silicon substrate. (c) The compound of α-lactose and water was coated on a rectangular hole with an area of 7 mm × 20 mm.
Fig. 2
Fig. 2 The extracted absorbance αs for (a) the ‖ and (b) the ⊥-cases as a function of the measured frequency and the relative slit width ranging from 5 µm to 30 µm. The absorbances near 0.53 THz for the both cases at d=25.3±1.3 µm and d=6.6 ±1.3 µm are respectively depicted as dotted white lines in Fig. 3.
Fig. 3
Fig. 3 The relative absopbance α s ( ω ) = ln | E ˜ s ( ω ) / E ˜ ref ( ω ) | is plotted around the frequency at 0.53 THz for (a) the slit width of d=25.3±1.3 µm and (b) of d=6.6±1.3 µm. All the measured data are plotted as closed circles for the ‖-case and open rectangles for the ⊥-case, and the curves are numerical fit to Eq. (5). The typical measurement uncertainty for the ‖ case is shown with red error lines, and the uncertainty for the ⊥ case is smaller than the size of the retangular symbols.
Fig. 4
Fig. 4 Comparison of normalized difference of the relative absorbance, ∆αs = ([αs]max − [αs]base), between the ‖ and ⊥ cases.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H 2 t = 1 2 H 0 , E 2 n = 1 2 E 0 ,
E ( z , t ) = π 2 8 ( d λ ) 2 Z 0 L n ^ × H 0 exp [ i ( k z ω t ) ] z ,
E ( z , t ) = [ β i ( d λ ) ] E 0 L exp [ i ( k z ω t ) ] z ,
α s ( ω ) = ln | E ˜ s ( ω ) E ˜ ref ( ω ) | ,
α s ( ω ) = Im n S n ω 0 , n 2 ω 2 i γ n ω ,
E ( r ) = c k 2 4 π n ^ × M exp ( i k r ) r , H ( r ) = k 2 4 π μ 0 n ^ × ( M × n ^ ) exp ( i k r ) r ,
H = η μ 0 , × H = ϵ 0 E t , E = 0 , × E = K μ 0 H t .
η ( x , y ) = C H 0 y / d 2 / 4 y 2 ,
S δ H n ^ d a = μ 0 1 L / 2 L / 2 d x δ y / 2 δ y / 2 d y η ( x , y ) ,
H = C 2 π μ 0 d 2 d 2 d y H 0 y ( y y ) d 2 / 4 y 2 .
M = S d x d y η ( x , y ) y = π μ 0 8 d 2 L H 0 ,
E ( z , t ) = π 2 8 ( d λ ) 2 Z 0 L n ^ × H 0 exp [ i ( k z ω t ) ] z .
E ( r ) = k 2 4 π ϵ 0 n ^ × ( P × n ^ ) exp ( i k r ) r .
E ( r ) = i k Z 0 4 π exp ( i k r ) r n ^ × ( S K e d 2 r × n ^ ) ,
E ( r , t ) = k Z 0 4 π exp [ i ( k r ω t ) ] r S d 2 r | K e ( r ) E 0 ( r ) | E 0 ( r ) .
E ( z , t ) = β L E 0 ( 0 ) exp [ i ( k z ω t ) ] / z ,
E ( r , t ) = i k 2 π e i ( k r ω t ) r S d 2 r E 0 ( x , y , z = 0 ) exp ( i k r r / r ) .
E ( z , t ) = i ( d λ ) L E 0 ( 0 ) exp [ i ( k z ω t ) ] / z .
E ( z , t ) = [ β i ( d λ ) ] E 0 L exp [ i ( k z ω t ) ] z .

Metrics