Abstract

We experimentally presented a full quantum detector tomography of a synchronously pumped infrared single-photon frequency upconversion detector. A maximum detection efficiency of 37.6% was achieved at the telecom wavelength of 1558 nm with a background noise about 1.0 × 10−3 counts/pulse. The corresponding internal quantum conversion efficiency reached as high as 84.4%. The detector was then systematically characterized at different pump powers to investigate the quantum decoherence behavior. Here the reconstructed positive operator valued measure elements were equivalently illustrated with the Wigner function formalism, where the quantum feature of the detector is manifested by the presence of negative values of the Wigner function. In our experiment, pronounced negativities were attained due to the high detection efficiency and low background noise, explicitly showing the quantum feature of the detector. Such quantum detector could be useful in optical quantum state engineering, quantum information processing and communication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum witness of high-speed low-noise single-photon detection

Lin Zhao, Kun Huang, Yan Liang, Jie Chen, Xueshun Shi, E Wu, and Heping Zeng
Opt. Express 23(25) 31857-31863 (2015)

Photon correlation in single-photon frequency upconversion

Xiaorong Gu, Kun Huang, Haifeng Pan, E Wu, and Heping Zeng
Opt. Express 20(3) 2399-2407 (2012)

Enhancing the detectivity of an upconversion single-photon detector by spatial filtering of upconverted parametric fluorescence

Lichun Meng, Lasse Høgstedt, Peter Tidemand-Lichtenberg, Christian Pedersen, and Peter John Rodrigo
Opt. Express 26(19) 24712-24722 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
    [Crossref] [PubMed]
  2. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  3. K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
    [Crossref]
  4. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
    [Crossref] [PubMed]
  5. J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10(1), 11–17 (2015).
    [Crossref]
  6. J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
    [Crossref]
  7. K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
    [Crossref] [PubMed]
  8. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  9. P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
    [Crossref]
  10. M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
    [Crossref] [PubMed]
  11. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
    [Crossref] [PubMed]
  12. H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
    [Crossref]
  13. H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
    [Crossref]
  14. Y. Iwai, T. Honjo, K. Inoue, H. Kamada, Y. Nishida, O. Tadanaga, and M. Asobe, “Polarization-independent, differential-phase-shift, quantum-key distribution system using upconversion detectors,” Opt. Lett. 34(10), 1606–1608 (2009).
    [Crossref] [PubMed]
  15. P. S. Kuo, O. Slattery, Y. S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21(19), 22523–22531 (2013).
    [Crossref] [PubMed]
  16. M. Legré, R. Thew, H. Zbinden, and N. Gisin, “High resolution optical time domain reflectometer based on 1.55mum up-conversion photon-counting module,” Opt. Express 15(13), 8237–8242 (2007).
    [Crossref] [PubMed]
  17. E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
    [Crossref] [PubMed]
  18. K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
    [Crossref] [PubMed]
  19. G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
    [Crossref] [PubMed]
  20. X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
    [Crossref]
  21. G. L. Shentu, X. X. Xia, Q. C. Sun, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. W. Pan, “Upconversion detection near 2 μm at the single photon level,” Opt. Lett. 38(23), 4985–4987 (2013).
    [Crossref] [PubMed]
  22. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
    [Crossref]
  23. C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
    [Crossref] [PubMed]
  24. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
    [Crossref] [PubMed]
  25. R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, “High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface,” Opt. Express 23(8), 9796–9802 (2015).
    [Crossref] [PubMed]
  26. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24(2), 295–299 (2007).
    [Crossref]
  27. X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
    [Crossref] [PubMed]
  28. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
    [Crossref]
  29. V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
    [Crossref] [PubMed]
  30. J. Fiurášek, “Maximum-likelihood estimation of quantum measurement,” Phys. Rev. A 64(2), 024102 (2001).
    [Crossref]
  31. P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
    [Crossref] [PubMed]
  32. X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
    [Crossref]

2015 (5)

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10(1), 11–17 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
[Crossref]

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, “High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface,” Opt. Express 23(8), 9796–9802 (2015).
[Crossref] [PubMed]

2014 (2)

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

2013 (5)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

P. S. Kuo, O. Slattery, Y. S. Kim, J. S. Pelc, M. M. Fejer, and X. Tang, “Spectral response of an upconversion detector and spectrometer,” Opt. Express 21(19), 22523–22531 (2013).
[Crossref] [PubMed]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

G. L. Shentu, X. X. Xia, Q. C. Sun, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. W. Pan, “Upconversion detection near 2 μm at the single photon level,” Opt. Lett. 38(23), 4985–4987 (2013).
[Crossref] [PubMed]

P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
[Crossref] [PubMed]

2012 (3)

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

2011 (2)

2010 (3)

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

E. Pomarico, B. Sanguinetti, R. Thew, and H. Zbinden, “Room temperature photon number resolving detector for infared wavelengths,” Opt. Express 18(10), 10750–10759 (2010).
[Crossref] [PubMed]

2009 (2)

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Y. Iwai, T. Honjo, K. Inoue, H. Kamada, Y. Nishida, O. Tadanaga, and M. Asobe, “Polarization-independent, differential-phase-shift, quantum-key distribution system using upconversion detectors,” Opt. Lett. 34(10), 1606–1608 (2009).
[Crossref] [PubMed]

2008 (1)

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

2007 (3)

2006 (2)

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

2005 (1)

2004 (1)

2001 (1)

J. Fiurášek, “Maximum-likelihood estimation of quantum measurement,” Phys. Rev. A 64(2), 024102 (2001).
[Crossref]

1990 (1)

Aellen, T.

Albota, M. A.

Amri, T.

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

Arakawa, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Arroyo, J. O.

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10(1), 11–17 (2015).
[Crossref]

Asobe, M.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Baudoin, R.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Baune, C.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Bouyeron, L.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Brink, D.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Buller, G. S.

Ceus, D.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Coldenstrodt-Ronge, H.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

D’Auria, V.

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

Dam, J. S.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Delage, L.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Diamanti, E.

Dong, H.

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

Eberle, T.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Eisert, J.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Fabre, C.

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

Faist, J.

Feito, A.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Fejer, M. M.

Ferrari, S.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Fiurášek, J.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

J. Fiurášek, “Maximum-likelihood estimation of quantum measurement,” Phys. Rev. A 64(2), 024102 (2001).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Giovannini, M.

Gisin, N.

Gomes, J. T.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Grossard, L.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Gu, X.

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Hadfield, R. H.

Händchen, V.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Hernandez-Marin, S.

Herrmann, H.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Honjo, T.

Huang, K.

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

Ilin, K.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Inoue, K.

Itzler, M. A.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
[Crossref]

Iwai, Y.

Jian, Y.

Kahl, O.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Kamada, H.

Kim, Y. S.

Kukura, P.

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10(1), 11–17 (2015).
[Crossref]

Kumar, P.

Kuo, P. S.

Kwiat, P. G.

Langrock, C.

Laurat, J.

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

Lee, N.

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

Legré, M.

Lewes-Malandrakis, G.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Li, X.

Li, Y.

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Lu, W.

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

Lundeen, J. S.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

McCarthy, A.

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Miyazawa, T.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

Nambu, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Nebel, C.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Nishida, Y.

Pan, H.

R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, “High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface,” Opt. Express 23(8), 9796–9802 (2015).
[Crossref] [PubMed]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

Pan, J. W.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
[Crossref]

G. L. Shentu, X. X. Xia, Q. C. Sun, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. W. Pan, “Upconversion detection near 2 μm at the single photon level,” Opt. Lett. 38(23), 4985–4987 (2013).
[Crossref] [PubMed]

Pedersen, C.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Pelc, J. S.

Pernice, W.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Plenio, M. B.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Pomarico, E.

Pregnell, K. L.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Ralph, T. C.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Rath, P.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Ren, M.

Reynaud, F.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Roussev, R. V.

Sakuma, Y.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Samblowski, A.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Sanguinetti, B.

Schnabel, R.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shentu, G. L.

Siegel, M.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Silberhorn, Ch.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Slattery, O.

Sohler, W.

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Sproll, F.

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Sun, Q. C.

Tadanaga, O.

Takemoto, K.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Takesue, H.

Tang, R.

Tang, X.

Tanzilli, S.

Temporão, G.

Thew, R.

Tidemand-Lichtenberg, P.

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

VanDevender, A. P.

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Vollmer, C. E.

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

Wallace, A. M.

Walmsley, I. A.

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Warburton, R. E.

Wong, F. N.

Wu, E.

R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, “High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface,” Opt. Express 23(8), 9796–9802 (2015).
[Crossref] [PubMed]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

Wu, G.

Wu, W.

Xia, X. X.

Yamamoto, T.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Yamamoto, Y.

Yorozu, S.

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Zbinden, H.

Zeng, H.

R. Tang, X. Li, W. Wu, H. Pan, H. Zeng, and E. Wu, “High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface,” Opt. Express 23(8), 9796–9802 (2015).
[Crossref] [PubMed]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Photon correlation in single-photon frequency upconversion,” Opt. Express 20(3), 2399–2407 (2012).
[Crossref] [PubMed]

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

Zhang, J.

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
[Crossref]

Zhang, Q.

Appl. Phys. Lett. (4)

K. Huang, X. Gu, H. Pan, E. Wu, and H. Zeng, “Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion,” Appl. Phys. Lett. 100(15), 151102 (2012).
[Crossref]

H. Pan, H. Dong, H. Zeng, and W. Lu, “Efficient single-photon counting at 1.55 mum by intracavity frequency upconversion in a unidirectional ring laser,” Appl. Phys. Lett. 89(19), 191108 (2006).
[Crossref]

H. Dong, H. Pan, Y. Li, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 mum with ultralow background counts,” Appl. Phys. Lett. 93(7), 071101 (2008).
[Crossref]

X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, and H. Zeng, “Temporal and spectral control of single-photon frequency upconversion for pulsed radiation,” Appl. Phys. Lett. 96(13), 131111 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

X. Gu, K. Huang, H. Pan, E. Wu, and H. Zeng, “Efficient mid-infrared single-photon frequency upconversion detection with ultra-low background counts,” Laser Phys. Lett. 10(5), 055401 (2013).
[Crossref]

Light Sci. Appl. (2)

P. Rath, O. Kahl, S. Ferrari, F. Sproll, G. Lewes-Malandrakis, D. Brink, K. Ilin, M. Siegel, C. Nebel, and W. Pernice, “Superconducting single-photon detectors integrated with diamond nanophotonic circuits,” Light Sci. Appl. 4(10), e338 (2015).
[Crossref]

J. Zhang, M. A. Itzler, H. Zbinden, and J. W. Pan, “Advances in InGaAs/InP single-photon detector systems for quantum communication,” Light Sci. Appl. 4(5), e286 (2015).
[Crossref]

Nat. Photonics (4)

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10(1), 11–17 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4(11), 786–791 (2010).
[Crossref]

Nat. Phys. (1)

J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys. 5(1), 27–30 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

K. Huang, X. Gu, M. Ren, Y. Jian, H. Pan, G. Wu, E. Wu, and H. Zeng, “Photon-number-resolving detection at 1.04 μm via coincidence frequency upconversion,” Opt. Lett. 36(9), 1722–1724 (2011).
[Crossref] [PubMed]

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31(8), 1094–1096 (2006).
[Crossref] [PubMed]

M. A. Albota and F. N. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett. 29(13), 1449–1451 (2004).
[Crossref] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005).
[Crossref] [PubMed]

Y. Iwai, T. Honjo, K. Inoue, H. Kamada, Y. Nishida, O. Tadanaga, and M. Asobe, “Polarization-independent, differential-phase-shift, quantum-key distribution system using upconversion detectors,” Opt. Lett. 34(10), 1606–1608 (2009).
[Crossref] [PubMed]

R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
[Crossref] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15(24), 1476–1478 (1990).
[Crossref] [PubMed]

G. L. Shentu, X. X. Xia, Q. C. Sun, J. S. Pelc, M. M. Fejer, Q. Zhang, and J. W. Pan, “Upconversion detection near 2 μm at the single photon level,” Opt. Lett. 38(23), 4985–4987 (2013).
[Crossref] [PubMed]

P. S. Kuo, J. S. Pelc, O. Slattery, Y. S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett. 38(8), 1310–1312 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. Fiurášek, “Maximum-likelihood estimation of quantum measurement,” Phys. Rev. A 64(2), 024102 (2001).
[Crossref]

Phys. Rev. Lett. (3)

V. D’Auria, N. Lee, T. Amri, C. Fabre, and J. Laurat, “Quantum decoherence of single-photon counters,” Phys. Rev. Lett. 107(5), 050504 (2011).
[Crossref] [PubMed]

C. E. Vollmer, C. Baune, A. Samblowski, T. Eberle, V. Händchen, J. Fiurášek, and R. Schnabel, “Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm,” Phys. Rev. Lett. 112(7), 073602 (2014).
[Crossref] [PubMed]

J. T. Gomes, L. Delage, R. Baudoin, L. Grossard, L. Bouyeron, D. Ceus, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of spatial-coherence analysis of a blackbody through an up-conversion interferometer,” Phys. Rev. Lett. 112(14), 143904 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Takemoto, Y. Nambu, T. Miyazawa, Y. Sakuma, T. Yamamoto, S. Yorozu, and Y. Arakawa, “Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors,” Sci. Rep. 5, 14383 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup. EDFL: erbium-doped fiber laser; YDFL: ytterbium-doped fiber laser; EDFA: erbium-doped fiber amplifier; YDFA: ytterbium-doped fiber amplifier; Cir: circulator; Col1,2,3,4: collimators; Atten: fixed attenuator; FBG1: fiber Bragg grating at 1558 nm; FBG2: fiber Bragg grating at 1036 nm; LP: long-pass filter cutting off at 1000 nm; BP: band-pass filter at 622 nm; HWP: half wave plate; GP1,2: Glan prisms; FM: flip mirror; VA: variable attenuator; DM: dichroic mirror; L1,2,3: lenses; PPLN: periodically poled lithium niobate; M: mirror with high reflectivity at 622 nm; PH: pinhole; NF: notch filter; SPCM: single-photon counting module.
Fig. 2
Fig. 2 Detection efficiency and background noise as a function of the pump power. Inset: Efficiency to noise ratio dependent on the pump power. The error bars are produced from the standard deviation of repeated experiment measurements.
Fig. 3
Fig. 3 Detection probability and the POVMs at different pump powers. (a) Detection probability at different pump powers of 30 mW and 100 mW, respectively. Green points: at pump power of 30 mW; blue points: at pump power of 100 mW. |α|2 denotes the average photon number per pulse of the signal states. (b) Π ^ off and Π ^ on at the pump power of 30 mW. (c) Π ^ off and Π ^ on at the pump power of 100 mW. Dark color bars: reconstructed POVM based on QDT; light color bars: simulated POVMs based on experimental measured η and ν.
Fig. 4
Fig. 4 Wigner function of the UCD. (a) Cross sections of the Wigner function of the UCD at pump powers of 30 mW (solid red line) and 100 mW (solid blue line) with the simulations (dashed lines). (b) Evolution of the Wigner function cross section curves. (c) 2πσ02Won(0,0) values as a function of the pump power.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

H ^ =ig E p ( ^ a ^ 1 a ^ 2 + H.c),
η= sin 2 (|g E p |L),
|g E p |L=π/2
η D = T f η Q sin 2 ( π 2 P pump P 0 P sat ),
Π ^ n = k=0 M r k,n |k k|,
Π ^ off = e ν(P) k=0 [1η(P)] k |kk| , Π ^ on + Π ^ off =1,
W off (x,y)= k=0 M r k,off W k (x+y)
W on ( x, y )= W 1 ( x, y ) W off ( x, y ).
W on = 1 2π σ 0 2 [ 1 2 e ν(P) 2η(P) e ( x 2 + y 2 )/2 σ η 2 ],
σ η = 2-η η σ 0 .

Metrics