Abstract

We present the design of a tapered nanocavity, obtained by sandwiching a photonic wire section between a planar gold reflector and a few-period Bragg mirror integrated into the tapered wire. Thanks to its ultrasmall mode volume (0.71 λ3/n3), this hybrid nanocavity largely enhances the spontaneous emission rate of an embedded quantum dot (Purcell factor: 6), while offering a wide operation bandwidth (full-width half-maximum: 20 nm). In addition, the top tapered section shapes the cavity far-field emission into a very directive output beam, with a Gaussian spatial profile. For realistic taper dimensions, a total outcoupling efficiency to a Gaussian beam of 0.8 is predicted. Envisioned applications include bright sources of non-classical states of light, such as widely tunable sources of indistinguishable single photons and polarization-entangled photon pairs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic “hourglass” design for efficient quantum light emission

Andreas Dyhl Osterkryger, Julien Claudon, Jean-Michel Gérard, and Niels Gregersen
Opt. Lett. 44(11) 2617-2620 (2019)

Designs for high-efficiency electrically pumped photonic nanowire single-photon sources

Niels Gregersen, Torben Roland Nielsen, Jesper Mørk, Julien Claudon, and Jean-Michel Gérard
Opt. Express 18(20) 21204-21218 (2010)

Solid-state single photon sources: the nanowire antenna

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard
Opt. Express 17(4) 2095-2110 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Barz, “Quantum computing with photons: introduction to the circuit model, the oneway quantum computer, and the fundamental principles of photonic experiments,” J. Phys. At. Mol. Opt. Phys. 48(8), 083001 (2015).
    [Crossref]
  2. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  3. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [Crossref]
  4. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [Crossref] [PubMed]
  5. P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
    [Crossref] [PubMed]
  6. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
    [Crossref]
  7. N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
    [Crossref]
  8. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [Crossref] [PubMed]
  9. A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
    [Crossref]
  10. A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
    [Crossref] [PubMed]
  11. P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
    [Crossref]
  12. S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
    [Crossref]
  13. P. Kaer and J. Mørk, “Decoherence in semiconductor cavity QED systems due to phonon couplings,” Phys. Rev. B 90(3), 035312 (2014).
    [Crossref]
  14. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).
  15. M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
    [Crossref] [PubMed]
  16. Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
    [Crossref] [PubMed]
  17. Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
    [Crossref] [PubMed]
  18. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  19. J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, Top. Appl. Phys. 90, P. Michler, ed. (Springer, 2003), pp. 269–315.
  20. J. M. Gérard and B. Gayral, “Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [Crossref]
  21. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [Crossref] [PubMed]
  22. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
    [Crossref] [PubMed]
  23. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
    [Crossref] [PubMed]
  24. N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
    [Crossref]
  25. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
    [Crossref] [PubMed]
  26. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
    [Crossref] [PubMed]
  27. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [Crossref] [PubMed]
  28. G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
    [Crossref] [PubMed]
  29. P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
    [Crossref]
  30. J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
    [Crossref] [PubMed]
  31. J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
    [Crossref] [PubMed]
  32. Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
    [Crossref]
  33. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
    [Crossref] [PubMed]
  34. N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
    [Crossref] [PubMed]
  35. P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
    [Crossref]
  36. D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
    [Crossref]
  37. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
    [Crossref] [PubMed]
  38. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
    [Crossref]
  39. L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
    [Crossref]
  40. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
    [Crossref] [PubMed]
  41. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
    [Crossref]
  42. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  43. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1963).
    [Crossref]
  44. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt. 21(6), 1069–1072 (1982).
    [Crossref] [PubMed]
  45. T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
    [Crossref] [PubMed]
  46. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
    [Crossref]
  47. A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
    [Crossref]
  48. P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
    [Crossref]
  49. Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
    [Crossref] [PubMed]
  50. P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
    [Crossref]
  51. N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
    [Crossref]
  52. N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
    [Crossref]
  53. P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
    [Crossref]
  54. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  55. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
    [Crossref]
  56. N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
    [Crossref]
  57. N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
    [Crossref]
  58. R. Trotta and A. Rastelli, “Engineering of quantum dot photon sources via electro-elastic fields,” in Engineering the Atom-Photon Interaction, A. Predojević and M. W. Mitchell, eds. (2015), pp. 277–302.

2016 (5)

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

2015 (5)

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

S. Barz, “Quantum computing with photons: introduction to the circuit model, the oneway quantum computer, and the fundamental principles of photonic experiments,” J. Phys. At. Mol. Opt. Phys. 48(8), 083001 (2015).
[Crossref]

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

2014 (5)

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

P. Kaer and J. Mørk, “Decoherence in semiconductor cavity QED systems due to phonon couplings,” Phys. Rev. B 90(3), 035312 (2014).
[Crossref]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

2013 (6)

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
[Crossref]

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[Crossref]

2012 (2)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

2011 (4)

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

2010 (8)

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (5)

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[Crossref]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

2007 (2)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

2006 (2)

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

2004 (1)

P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
[Crossref]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (2)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

2001 (1)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[Crossref]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

1999 (1)

1982 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1963 (1)

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Andreani, L. C.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Antón, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Arakawa, Y.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

Arnold, C.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Atatüre, M.

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Auffeves, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Auffèves, A.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Bååk, T.

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Baets, R.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[Crossref]

Bakkers, E. P. A. M.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Barz, S.

S. Barz, “Quantum computing with photons: introduction to the circuit model, the oneway quantum computer, and the fundamental principles of photonic experiments,” J. Phys. At. Mol. Opt. Phys. 48(8), 083001 (2015).
[Crossref]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Bazin, M.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Berthelot, A.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Besbes, M.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

Beveratos, A.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

Bienstman, P.

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[Crossref]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Bleuse, J.

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Bloch, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Bouwes Bavinck, M.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

Braakman, F. R.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Bulgarini, G.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Burger, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Cadeddu, D.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Carmele, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

Cassabois, G.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Chen, L.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

Chen, M.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Choy, J. T.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clarke, E.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Claudon, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

Creasey, M.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Dada, A. C.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Dalacu, D.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

Dambach, M.

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

De Santis, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Delalande, C.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Delga, A.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

Delmonte, V.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

Demory, J.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Ding, X.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Dousse, A.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Duan, Z.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Dupuy, E.

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Favero, I.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Ferreira, R.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Friedler, I.

Galopin, E.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Gayral, B.

Gazzano, O.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Gerace, D.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Gérard, J. M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
[Crossref]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

J. M. Gérard and B. Gayral, “Strong purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[Crossref]

Gérard, J.-M.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Gerardot, B. D.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Gerhardt, I.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Giesz, V.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Gómez, C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Grange, T.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Gregersen, N.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
[Crossref]

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[Crossref]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

Gschrey, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Hahner, R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

He, Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

He, Y.-M.

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Heindel, T.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Höfling, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Hornecker, G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Hu, Y.-N.

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Hugonin, J. P.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
[Crossref]

Iwamoto, S.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

Jaffrennou, P.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Jakubczyk, T.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

Jauho, A.-P.

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jöns, K. D.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Kaer, P.

P. Kaer and J. Mørk, “Decoherence in semiconductor cavity QED systems due to phonon couplings,” Phys. Rev. B 90(3), 035312 (2014).
[Crossref]

P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
[Crossref]

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[Crossref]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

Kamp, M.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Kasprzak, J.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Knorr, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Krebs, O.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

Kremer, P. E.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Kumar, P.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Kumar, S.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Lalanne, P.

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
[Crossref]

Lanco, L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lecamp, G.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

Lemaítre, A.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lemaître, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Lermer, M.

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

Loncar, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Loredo, J. C.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Lu, C.-Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Ma, Y.

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Maier, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Maksymov, I.

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

Maksymov, I. S.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Malik, N. S.

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

Malitson, H.

Maze, J. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

McCutcheon, D. P. S.

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Mermillod, Q.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Michaelis de Vasconcellos, S.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Mørk, J.

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

P. Kaer and J. Mørk, “Decoherence in semiconductor cavity QED systems due to phonon couplings,” Phys. Rev. B 90(3), 035312 (2014).
[Crossref]

P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
[Crossref]

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[Crossref]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[Crossref]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

Munsch, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

Nielsen, T. R.

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

N. Gregersen, T. R. Nielsen, J. Mørk, J. Claudon, and J. M. Gérard, “Designs for high-efficiency electrically pumped photonic nanowire single-photon sources,” Opt. Express 18(20), 21204–21218 (2010).
[Crossref] [PubMed]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Nomura, M.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

Nowak, A.

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

Nowicki-Bringuier, Y.-R.

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

Pan, J.-W.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Peinke, E.

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

Perinetti, U.

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

Poggio, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Poizat, J.-P.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Poole, P. J.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

Portalupi, S. L.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Rastelli, A.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

Reimer, M. E.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Reitzenstein, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Richard, M.

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

Robert-Philip, I.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33(22), 2635–2637 (2008).
[Crossref] [PubMed]

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Rodt, S.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Roussignol, Ph.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Sagnes, I.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Santos, M. F.

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

Sauvan, C.

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17(4), 2095–2110 (2009).
[Crossref] [PubMed]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schmidt, O. G.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

Schmidt, R.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schnauber, P.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Schneider, C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Schulze, J.-H.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Seifried, M.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Senellart, P.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Siyushev, P.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Somaschi, N.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Stein, G.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Stepanov, P.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Strittmatter, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Suffczynski, J.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

Suhr, T.

T. Suhr, N. Gregersen, K. Yvind, and J. Mørk, “Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission,” Opt. Express 18(11), 11230–11241 (2010).
[Crossref] [PubMed]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

Tanabe, K.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

Teissier, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

Thoma, A.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Towe, E.

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

Tromborg, B.

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

Unsleber, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Voisin, C.

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Voisin, P.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Wang, L.

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

Warburton, R. J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Wei, Y.-J.

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

White, A. G.

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

Wolters, J.

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Wrachtrup, J.

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

Wu, D.

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

Yang, J.

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

Yvind, K.

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Zwiller, V.

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

Ann. Phys. (1)

Y.-R. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J. M. Gérard, “A novel high-efficiency single-mode single photon source,” Ann. Phys. 32(2-3), 151–154 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

L. Chen and E. Towe, “Nanowire lasers with distributed-Bragg-reflector mirrors,” Appl. Phys. Lett. 89(5), 053125 (2006).
[Crossref]

N. Gregersen, T. R. Nielsen, B. Tromborg, and J. Mørk, “Quality factors of nonideal micro pillars,” Appl. Phys. Lett. 91(1), 011116 (2007).
[Crossref]

P. Lalanne, J. P. Hugonin, and J. M. Gérard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84(23), 4726–4728 (2004).
[Crossref]

N. Akopian, U. Perinetti, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Tuning single GaAs quantum dots in resonance with a rubidium vapor,” Appl. Phys. Lett. 97(8), 082103 (2010).
[Crossref]

P. Stepanov, A. Delga, N. Gregersen, E. Peinke, M. Munsch, J. Teissier, J. Mørk, M. Richard, J. Bleuse, J. M. Gérard, and J. Claudon, “Highly directive and Gaussian far-field emission from ‘giant’ photonic trumpets,” Appl. Phys. Lett. 107(14), 141106 (2015).
[Crossref]

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

ChemPhysChem (1)

J. Claudon, N. Gregersen, P. Lalanne, and J. M. Gérard, “Harnessing light with photonic nanowires: fundamentals and applications to quantum optics,” ChemPhysChem 14(11), 2393–2402 (2013).
[Crossref] [PubMed]

Eur. Phys. J. D (1)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18(2), 197–210 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Gregersen, P. Kaer, and J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Phys. At. Mol. Opt. Phys. (1)

S. Barz, “Quantum computing with photons: introduction to the circuit model, the oneway quantum computer, and the fundamental principles of photonic experiments,” J. Phys. At. Mol. Opt. Phys. 48(8), 083001 (2015).
[Crossref]

Nano Lett. (2)

Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage,” Nano Lett. 14(11), 6515–6519 (2014).
[Crossref] [PubMed]

G. Bulgarini, M. E. Reimer, M. Bouwes Bavinck, K. D. Jöns, D. Dalacu, P. J. Poole, E. P. A. M. Bakkers, and V. Zwiller, “Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling,” Nano Lett. 14(7), 4102–4106 (2014).
[Crossref] [PubMed]

Nat. Commun. (3)

O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[Crossref] [PubMed]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, “On-demand semiconductor single-photon source with near-unity indistinguishability,” Nat. Nanotechnol. 8(3), 213–217 (2013).
[Crossref] [PubMed]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Nat. Photonics (5)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J. M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4, 174–177 (2010).

N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10(5), 340–345 (2016).
[Crossref]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single-photon emission from a diamond–silver aperture,” Nat. Photonics 5(12), 738–743 (2011).
[Crossref]

N. Akopian, L. Wang, A. Rastelli, O. G. Schmidt, and V. Zwiller, “Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot,” Nat. Photonics 5(4), 230–233 (2011).
[Crossref]

Nat. Phys. (1)

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, “Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot,” Nat. Phys. 2(11), 759–764 (2006).
[Crossref]

Nature (5)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[Crossref] [PubMed]

P. Siyushev, G. Stein, J. Wrachtrup, and I. Gerhardt, “Molecular photons interfaced with alkali atoms,” Nature 509(7498), 66–70 (2014).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

P. Kaer, N. Gregersen, and J. Mørk, “The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems,” New J. Phys. 15(3), 035027 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (2)

P. Bienstman and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001).
[Crossref]

N. Gregersen and J. Mørk, “An improved perfectly matched layer for the eigenmode expansion technique,” Opt. Quantum Electron. 40(11-12), 957–966 (2008).
[Crossref]

Phys. Rev. A (1)

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78(4), 045802 (2008).
[Crossref]

Phys. Rev. B (6)

A. Auffèves, D. Gerace, J.-M. Gérard, M. F. Santos, L. C. Andreani, and J.-P. Poizat, “Controlling the dynamics of a coupled atom-cavity system by pure dephasing,” Phys. Rev. B 81(24), 245419 (2010).
[Crossref]

P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and J. Mørk, “Microscopic theory of phonon-induced effects on semiconductor quantum dot decay dynamics in cavity QED,” Phys. Rev. B 86(8), 085302 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B. D. Gerardot, “Strain-tunable quantum dot embedded in a nanowire antenna,” Phys. Rev. B 90(20), 201408 (2014).
[Crossref]

S. Unsleber, D. P. S. McCutcheon, M. Dambach, M. Lermer, N. Gregersen, S. Höfling, J. Mørk, C. Schneider, and M. Kamp, “Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter,” Phys. Rev. B 91(7), 075413 (2015).
[Crossref]

P. Kaer and J. Mørk, “Decoherence in semiconductor cavity QED systems due to phonon couplings,” Phys. Rev. B 90(3), 035312 (2014).
[Crossref]

Phys. Rev. Lett. (7)

M. Munsch, N. S. Malik, E. Dupuy, A. Delga, J. Bleuse, J. M. Gérard, J. Claudon, N. Gregersen, and J. Mørk, “Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam,” Phys. Rev. Lett. 110(17), 177402 (2013).
[Crossref] [PubMed]

A. Thoma, P. Schnauber, M. Gschrey, M. Seifried, J. Wolters, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Carmele, A. Knorr, T. Heindel, and S. Reitzenstein, “Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-mandel experiments,” Phys. Rev. Lett. 116(3), 033601 (2016).
[Crossref] [PubMed]

J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J. M. Gérard, I. Maksymov, J. P. Hugonin, and P. Lalanne, “Inhibition, enhancement, and control of spontaneous emission in photonic nanowires,” Phys. Rev. Lett. 106(10), 103601 (2011).
[Crossref] [PubMed]

I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105(18), 180502 (2010).
[Crossref] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[Crossref] [PubMed]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref] [PubMed]

Q. Mermillod, T. Jakubczyk, V. Delmonte, A. Delga, E. Peinke, J.-M. Gérard, J. Claudon, and J. Kasprzak, “Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas,” Phys. Rev. Lett. 116(16), 163903 (2016).
[Crossref] [PubMed]

Phys. Status Solidi (1)

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Design of a high-Q H0 photonic crystal nanocavity for cavity QED,” Phys. Status Solidi 8(2), 340–342 (2011).
[Crossref]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Other (2)

J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots, Top. Appl. Phys. 90, P. Michler, ed. (Springer, 2003), pp. 269–315.

R. Trotta and A. Rastelli, “Engineering of quantum dot photon sources via electro-elastic fields,” in Engineering the Atom-Photon Interaction, A. Predojević and M. W. Mitchell, eds. (2015), pp. 277–302.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The photonic trumpet SPS design featuring a DBR in the inverted taper. The structure is divided into a top taper element in Section I and a bottom metal mirror in Section II separated by the dotted line at the QD layer, where the QD is represented by the red triangle.
Fig. 2
Fig. 2 (a) The 1D Purcell factor FP,Init (black) and the efficiency εInit (red) as function of bottom power reflection coefficient R 11 t . (b) The indistinguishability ν as function of FP for γPD = 1/(6 ns) (black solid) and γPD = 1/(0.92 ns) (red dashed).
Fig. 3
Fig. 3 (a) Illustration of the bottom part of the trumpet implementing a DBR. Reflection (b) and sum of reflection and transmission (c) as function of QD-DBR distance h for a varying number of DBR layer pairs.
Fig. 4
Fig. 4 (a) The bottom metal mirror geometry. Bottom metal mirror reflection (b) and optimum QD-mirror distance hb (c) as function of R0 for varying hg. α = 10°.
Fig. 5
Fig. 5 (a) The Purcell factor FP as function of QD-DBR distance h and wavelength λ. (b) The Purcell factor as function of λ for several values of h.
Fig. 6
Fig. 6 (a) The total efficiency ε as function of QD-DBR distance h and wavelength λ for a 0.4 NA lens. (b) ε as function of h for several values of ΓRad for λ = 925 nm. (c) Normalized absolute squares of coefficients cu and cd as function of h.
Fig. 7
Fig. 7 FP (a) and ε (b) as function of QD-DBR distance h for several numbers of DBR layer pairs for λ = 925 nm. (c) FP as function of λ for h = 200 nm. A 0.4 NA lens is considered.
Fig. 8
Fig. 8 (a) Lateral nanowire geometry with an off-axis QD. (b) Normalized spontaneous emission rates as function of emitter-axis distance ρ for dipole moments aligned along r and ϕ. (c) Associated β factors for the infinite nanowire. The efficiency ε of a photonic nanowire SPS featuring (d) a bare taper and (e) a taper implementing a DBR. (f) Associated Purcell factor. λ = 925 nm and R0 = 114 nm.
Fig. 9
Fig. 9 The top reflection coefficient (a), FP (b) and ε (c) as function of λ for varying opening angle α. h = 200 nm and a 0.4 NA lens is considered.
Fig. 10
Fig. 10 (a) Infinite nanowire geometry. (b) Normalized spontaneous emission rates as function of nanowire radius R0. (c) Spontaneous emission β factor as function of R0 for λ = 925 nm (black full curve) and as function of λ for R0 = 114 nm (red dashed curve).
Fig. 11
Fig. 11 (a) Illustration of the bare trumpet in absence of DBR. (b) Contour plot with lines defining transmission γ above 0.9 for the numerical apertures listed in the figure. The cross marks the chosen bare parameters in Table 2. Reprinted from Ref .[35] with the permission of AIP Publishing.
Fig. 12
Fig. 12 The DBR mirror geometry.

Tables (5)

Tables Icon

Table 1 Material refractive indices.

Tables Icon

Table 2 Bare taper geometry parameters.

Tables Icon

Table 3 Bottom metal mirror parameters.

Tables Icon

Table 4 Microcavity mode volumes.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε = γ | c u | 2 Γ T ,
c u = c 0 1 + r 11 b 1 r 11 t r 11 b
c d = c 0 1 + r 11 t 1 r 11 t r 11 b ,
Γ T = ( 1 | r 11 t | 2 ) | c u | 2 + ( 1 | r 11 b | 2 ) | c d | 2 + Γ Rad .
Γ M Γ 0 = Re [ ( 1 + r 11 t ) ( 1 + r 11 b ) 1 r 11 t r 11 b ] Γ HE 11 Γ 0 F P G .
F P = Γ M Γ 0 = 3 4 π 2 Q V ( λ n ) 3 ,
Q = λ r 2 ( 1 | r 11 t r 11 b | ) λ arg ( r 11 t r 11 b ) ,
ν = Γ 0 F P + Γ Rad Γ 0 F P + Γ Rad + 2 γ PD ,
t j t j ( 1 ) λ 4 n eff ( R j , e ( 1 ) ) ,
R j , e ( 1 ) = R j , b + tan θ 2 t j ( 0 ) .
h Final = h T j = 3 j = j max t j .

Metrics