Abstract

We develop a new, simple and non-destructive method to precisely measure the thickness of thin wall micro bubble resonators (MBRs) by using internal aerostatic pressure sensing. Measurement error of 1% at a bubble wall thickness of 2 μm is achieved. This method is applicable to both thin wall and thick wall MBR with high measurement accuracy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing

Yong Yang, Sunny Saurabh, Jonathan M. Ward, and Síle Nic Chormaic
Opt. Express 24(1) 294-299 (2016)

Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators

Ming Li, Xiang Wu, Liying Liu, and Lei Xu
Opt. Express 21(14) 16908-16913 (2013)

2-D optical/opto-mechanical microfluidic sensing with micro-bubble resonators

Zhenmin Chen, Ming Li, Xiang Wu, Liying Liu, and Lei Xu
Opt. Express 23(14) 17659-17664 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Berneschi, D. Farnesi, F. Cosi, G. N. Conti, S. Pelli, G. C. Righini, and S. Soria, “High Q silica microbubble resonators fabricated by arc discharge,” Opt. Lett. 36(17), 3521–3523 (2011).
    [Crossref]
  2. X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
    [Crossref]
  3. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref]
  4. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref]
  5. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
    [Crossref]
  6. W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
    [Crossref]
  7. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
    [Crossref]
  8. Y. Ooka, Y. Yang, J. Ward, and S. N. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8(9), 092001 (2015).
    [Crossref]
  9. Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, “Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators,” Opt. Lett. 41(8), 1736–1739 (2016).
    [Crossref]
  10. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
    [Crossref]
  11. M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
    [Crossref]
  12. J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
    [Crossref]
  13. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
    [Crossref]
  14. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]
  15. G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
    [Crossref]
  16. Q. Lu, M. Li, J. Liao, S. Liu, X. Wu, L. Liu, and L. Xu, “Strong coupling of hybrid and plasmonic resonances in liquid core plasmonic micro-bubble cavities,” Opt. Lett. 40(24), 5842–5845 (2015).
    [Crossref]
  17. Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
    [Crossref]
  18. A. Cosci, F. Quercioli, D. Farnesi, S. Berneschi, A. Giannetti, F. Cosi, A. Barucci, G. N. Conti, G. Righini, and S. Pelli, “Confocal reflectance microscopy for determination of microbubble resonator thickness,” Opt. Express 23(13), 16693–16701 (2015).
    [Crossref]
  19. T. Ioppolo and M. V. Ötügen, “Pressure tuning of whispering gallery mode resonators,” J. Opt. Soc. Am. B 24(10), 2721–2726 (2007).
    [Crossref]
  20. Y. Yang, S. Saurabh, J. Ward, and S. N. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
    [Crossref]

2016 (2)

2015 (4)

2014 (2)

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

2013 (3)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

M. Li, X. Wu, L. Liu, and L. Xu, “Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators,” Opt. Express 21(14), 16908–16913 (2013).
[Crossref]

2011 (3)

2010 (4)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref]

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
[Crossref]

2007 (1)

2005 (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Barucci, A.

Benson, O.

Berneschi, S.

Bolaños Quiñones, V. A.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Chormaic, S. N.

Conti, G. N.

Cosci, A.

Cosi, F.

Ding, F.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Dulashko, Y.

Fan, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Farnesi, D.

Giannetti, A.

Henze, R.

Huang, G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Ioppolo, T.

Kiravittaya, S.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Lee, W.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Li, H.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

Li, M.

Liao, J.

Liu, L.

Liu, S.

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Lu, Q.

Mei, Y.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Ooka, Y.

Y. Ooka, Y. Yang, J. Ward, and S. N. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8(9), 092001 (2015).
[Crossref]

Ötügen, M. V.

Pelli, S.

Pöllinger, M.

Quercioli, F.

Rauschenbeutel, A.

M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18(17), 17764–17775 (2010).
[Crossref]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Reddy, K.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Righini, G.

Righini, G. C.

Saurabh, S.

Schmidt, O. G.

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Seifert, T.

Soria, S.

Sumetsky, M.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref]

Sun, Y.

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

Ward, J.

Ward, J. M.

Y. Yang, S. Saurabh, J. M. Ward, and S. N. Chormaic, “High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing,” Opt. Express 24(1), 294–299 (2016).
[Crossref]

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

Windeler, R. S.

Wu, X.

Xu, L.

Yang, Y.

Zhang, X.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

ACS Nano (1)

G. Huang, V. A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications,” ACS Nano 4(6), 3123–3130 (2010).
[Crossref]

Anal. Chem. (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref]

Appl. Phys. Express (1)

Y. Ooka, Y. Yang, J. Ward, and S. N. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8(9), 092001 (2015).
[Crossref]

Appl. Phys. Lett. (3)

W. Lee, Y. Sun, H. Li, K. Reddy, M. Sumetsky, and X. Fan, “A quasi-droplet optofluidic ring resonator laser using a micro-bubble,” Appl. Phys. Lett. 99(9), 091102 (2011).
[Crossref]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. M. Ward, Y. Yang, and S. N. Chormaic, “Highly sensitive temperature measurements with liquid-core microbubble resonators,” IEEE Photonics Technol. Lett. 25(23), 2350–2353 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Different radii and wall thicknesses of the MBRs fabricated from silica capillaries with a radius of 65 μm and different initial thicknesses (T). The monomial fitting curve as a guide line was employed to estimate the geometrical features of MBRs and indirectly control the wall thicknesses of MBRs during fabrication.
Fig. 2
Fig. 2 Pressure sensitivity versus thickness t and outer radius a of MBR.
Fig. 3
Fig. 3 (a) Transmitted spectra at different internal pressures, (b) Dependence of the frequency with internal pressure.
Fig. 4
Fig. 4 Pressure (a), RI (b), surface thickness (c) and temperature (d) sensitivity of fundamental modes vs. the thickness of MBR. RI sensitivity of 3rd order radial mode is also given in (b).

Tables (1)

Tables Icon

Table 1 Statistics Data of Eight MBR Samples for Determination of MBR Thickness

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d λ λ = d a a + d n n ,
d a a = ( 4 G + 3 K ) p i b 3 4 G p o a 3 3 K p o b 3 12 G K ( a 3 b 3 ) ,
d n n = 3 ( p i b 3 p o a 3 ) C n 0 ( a 3 b 3 ) ,
S p = d v d p = c λ ( 3 C n 0 + 4 G + 3 K 12 G K ) χ ,
χ = b 3 a 3 b 3 .
t = f ( a , S p ) = a [ 1 ( S p A + S p ) 1 / 3 ] ,
u 2 ( t ) = ( f a ) 2 u 2 ( a ) + ( f S p ) 2 u 2 ( S p ) ,
S T = λ n e f f ( η c o r e κ c o r e + η w a l l κ w a l l + η a i r κ a i r ) ,

Metrics