Abstract

We show that perfect absorption of terahertz wave can be achieved in a compact system where an ultrathin film of lossless dielectric is coated on a doped semiconductor substrate. Due to the nontrivial reflection phase shift at the interface between the two media, strong resonant behavior and the concomitant antireflection occur at wavelengths that are much larger than the thickness of the dielectric film, resulting in strong absorption of the incident wave in a wide frequency range. Using this mechanism, we design a broadband terahertz absorber by coating a Ge film on a highly doped GaAs substrate. We show that such a system not only has a perfect absorption peak, but also exhibits high absorptance (over 0.9) within a fractional bandwidth of over 20%. By varying the free carrier density in the GaAs substrate, the central frequency of the absorption band can be tuned from 1.79 to 2.69 THz. In addition, the absorption performance of the proposed system is shown to be insensitive to both incident angle and polarization. Our results offer a low-cost way for the design of absorption-based THz devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals

Gopakumar Ramakrishnan, Gopika K. P. Ramanandan, Aurèle J. L. Adam, Man Xu, Nishant Kumar, Ruud W. A. Hendrikx, and Paul C. M. Planken
Opt. Express 21(14) 16784-16798 (2013)

Tunable and broadband coherent perfect absorption by ultrathin black phosphorus metasurfaces

Tianjing Guo and Christos Argyropoulos
J. Opt. Soc. Am. B 36(11) 2962-2971 (2019)

Broadband antireflection coating for optimized terahertz beam splitters

Weien Lai, Norman Born, Lorenz Maximilian Schneider, Arash Rahimi-Iman, Jan C. Balzer, and Martin Koch
Opt. Mater. Express 5(12) 2812-2819 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
    [Crossref]
  2. A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
    [Crossref]
  3. K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
    [Crossref]
  4. R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
    [Crossref]
  5. K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
    [Crossref]
  6. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref] [PubMed]
  7. S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
    [Crossref]
  8. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
    [Crossref] [PubMed]
  9. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  10. C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
    [Crossref]
  11. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  12. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
    [Crossref] [PubMed]
  13. Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
    [Crossref]
  14. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  15. L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
    [Crossref]
  16. D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
    [Crossref]
  17. D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  18. M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
    [Crossref]
  19. O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
    [Crossref]
  20. F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
    [Crossref]
  21. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  22. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  23. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).
  24. J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
    [Crossref]
  25. M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
    [Crossref]
  26. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range Invited,” Opt. Mater. Express 1(6), 1090–1099 (2011).
    [Crossref]
  27. R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
    [Crossref] [PubMed]
  28. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  29. J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
    [Crossref] [PubMed]
  30. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
    [Crossref]

2015 (2)

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

2014 (3)

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

2013 (6)

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
[Crossref]

J. W. Cleary, R. Soref, and J. R. Hendrickson, “Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire,” Opt. Express 21(16), 19363–19374 (2013).
[Crossref] [PubMed]

2012 (4)

R. Soref, J. Hendrickson, and J. W. Cleary, “Mid- to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures,” Opt. Express 20(4), 3814–3824 (2012).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

2011 (4)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range Invited,” Opt. Mater. Express 1(6), 1090–1099 (2011).
[Crossref]

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

2006 (1)

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2000 (1)

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

1991 (2)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

1990 (2)

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

1989 (1)

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Adams, D. C.

Akselrod, G. M.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Andrews, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Arsenault, L.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boltasseva, A.

Boreman, G. D.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Bowen, P. T.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Bradley, M. S.

Buchnev, O.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Buchwald, W. R.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Bulovic, V.

Capasso, F.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chang, T. Y.

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Chen, W.-C.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chin, A.

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Chyi, J. I.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Cleary, J. W.

Cluff, J. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Coldren, L. A.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Davids, P. S.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Edwards, O.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Fedotov, V. A.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Fujisawa, D.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Genevet, P.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Ginn, J. C.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Gu, S.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Guo, J.

Guo, L.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Hao, L.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Hata, H.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Hendrickson, J.

Hendrickson, J. R.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Huang, J.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Huggard, P. G.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Jarecki, R. L.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Jarrahi, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Kaczmarek, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Kats, M. A.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Keiding, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Kim, J.

Kimata, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Kishino, K.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Law, K. K.

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

Law, S.

Lee, C.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Li, J.-S.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Li, M.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Li, S.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Lin, Y.-S.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Linfield, E. H.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Luo, C.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Ma, F.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Medhi, G.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Merz, J. L.

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Misaki, K.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Moore, G. P.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Morkoc, H.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Naik, G. V.

Neuner, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Ogawa, S.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Peale, R. E.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Peng, Z.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Rahm, M.

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Reed, J.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Ritchie, D. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Shahzad, M.

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

Shaner, E. A.

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Shaw, C. J.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Shvets, G.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Simes, R. J.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Smith, D. R.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soref, R.

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Su, L.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Taylor, A. M.

Tischler, J. R.

Uetsuki, M.

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

Unlu, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Unlu, M. S.

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

Wallauer, J.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Walther, M.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Wasserman, D.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, D.-e.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Wu, C.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Xuehui, H.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Yan, R. H.

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

Yang, H.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Yang, Q.

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Yang, S. H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Ye, Q.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Zhang, B.

Zhang, J.

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Zhang, X.

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Zhao, X.

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

Zheludev, N. I.

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Adv. Mater. (1)

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, “Self-electro-optic device based on a superlattice asymmetric Fabry-Perot modulator with an on/off ratio >100:1,” Appl. Phys. Lett. 57(13), 1345–1347 (1990).
[Crossref]

S. Ogawa, D. Fujisawa, H. Hata, M. Uetsuki, K. Misaki, and M. Kimata, “Mushroom plasmonic metamaterial infrared absorbers,” Appl. Phys. Lett. 106(4), 041105 (2015).
[Crossref]

O. Buchnev, J. Wallauer, M. Walther, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Controlling intensity and phase of terahertz radiation with an optically thin liquid crystal-loaded metamaterial,” Appl. Phys. Lett. 103(14), 141904 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Liu, S. Gu, C. Luo, and X. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl. Phys., A Mater. Sci. Process. 108(1), 19–24 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

K. Kishino, M. S. Unlu, J. I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, “Resonant cavity-enhanced (RCE) photodetectors,” IEEE J. Quantum Electron. 27(8), 2025–2034 (1991).
[Crossref]

R. H. Yan, R. J. Simes, and L. A. Coldren, “Surface-normal electroabsorption reflection modulators using asymmetric Fabry-Perot structures,” IEEE J. Quantum Electron. 27(7), 1922–1931 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. H. Yan, R. J. Simes, and L. A. Coldren, “Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors,” IEEE Photonics Technol. Lett. 1(9), 273–275 (1989).
[Crossref]

J. Appl. Phys. (3)

J. C. Ginn, R. L. Jarecki, E. A. Shaner, and P. S. Davids, “Infrared plasmons on heavily-doped silicon,” J. Appl. Phys. 110(4), 043110 (2011).
[Crossref]

M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, G. D. Boreman, and O. Edwards, “Infrared surface plasmons on heavily doped silicon,” J. Appl. Phys. 110(12), 123105 (2011).
[Crossref]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87(5), 2382–2385 (2000).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Rahm, J.-S. Li, and W. J. Padilla, “THz wave modulators: a brief review on different modulation techniques,” J. Infrared Millim. Terahertz Waves 34(1), 1–27 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

A. Chin and T. Y. Chang, “Multilayer reflectors by molecular-beam epitaxy for resonance enhanced absorption in thin high-speed detectors,” J. Vac. Sci. Technol. B 8(2), 339–342 (1990).
[Crossref]

Light Sci. Appl. (1)

F. Ma, Y.-S. Lin, X. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light Sci. Appl. 3(5), e171 (2014).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

C. Wu, B. Neuner, G. Shvets, J. John, A. Milder, B. Zollars, and S. Savoy, “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B 84(7), 075102 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Phys. Scr. (1)

D.-e. Wen, H. Yang, Q. Ye, M. Li, L. Guo, and J. Zhang, “Broadband metamaterial absorber based on a multi-layer structure,” Phys. Scr. 88(1), 015402 (2013).
[Crossref]

Sci. Rep. (1)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref] [PubMed]

Solid State Commun. (1)

L. Hao, H. Xuehui, Q. Yang, and Z. Peng, “Design of a wide-band nearly perfect absorber based on multi-resonance with square patch,” Solid State Commun. 188, 5–11 (2014).
[Crossref]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the coating systems comprising a dielectric layer with thickness d and substrate. (a) A lossless dielectric layer on a perfect electric conductor (PEC). There is no absorption at all wavelengths. (b) A lossy dielectric layer deposited on a PEC substrate. Absorption resonance occurs when d ~/4nd. (c) A lossless dielectric layer on a metal substrate, which can excite a resonance even when d « λ/4nd owing to the non-trivial phase shifts at the interface between the two media, but the absorption is not strong since only a fraction of incident wave can be absorbed by the metal. (d) An ultrathin lossless dielectric layer (d « λ/4nd) on a doped semiconductor can support a strong absorption resonance because almost all of incident energy penetrates into the semiconductor and dissipates. (e) Reflection and absorption spectra and (f) the extracted effective parameters for a design of Fig. 1(d) where the refractive indices of the lossless dielectric and the substrate are set as 4 and 1+i, respectively.
Fig. 2
Fig. 2 φ ( r ˜ 12 ) as a function of the real and imaginary parts of n ˜ 2 when nd is fixed as 2. The pink line represents the solutions of n ˜ 2 to Eq. (2a).
Fig. 3
Fig. 3 (a) Side view of the thin film THz absorber structure. A doped GaAs substrate is coated with an ultrathin layer of Ge. (b) Real and imaginary parts of the refractive index of GaAs as a function of frequency when the carrier density N = 1.35 × 1017 cm−3. (c) φ ( r ˜ 12 ) as functions of the real and imaginary parts of the refractive index n ˜ 2 of a hypothetical substrate coated with a Ge (nd = 4) layer. The pink line represents the solutions of n ˜ 2 to Eq. (2a). The black line represents the values of n ˜ s extracted from (b). (d) Reflectance and absorptance vs frequency for the doped GaAs substrate with and without a 3 μm Ge coating layer.
Fig. 4
Fig. 4 Under different free carrier concentration N, the (a) real and (b) imaginary parts of the refractive index of the doped GaAs and the (c) absorption spectra at normal incidence for the doped GaAs substrate coated with a 3-μm-thick layer of Ge. The solid lines and circles correspond to the results from TMM and FDTD method, respectively.
Fig. 5
Fig. 5 Simulated absorption spectra for (a) TE and (b) TM wave, respectively, as a function of incident angle for doped GaAs coated with 3 μm of Ge. Here, the carrier density of the doped GaAs is N = 1.03 × 1017 cm−3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r ˜ = r 01 + r ˜ 12 e j 2 δ 1 + r 01 r ˜ 12 e j 2 δ
| r 01 | = | r ˜ 12 |
2 m π = 2 δ + φ ( r ˜ 12 )
ε ˜ s = ( n s ' + i n s ' ' ) 2 = ε s + i σ ˜ s / ( ε 0 ω ) ,

Metrics