Abstract

In nonlinear optical microendoscope (NOME), a fiber with excellent optical characteristics and a miniature scanning mechanism at the distal end are two key components. Double-clad fibers (DCFs) and double-clad photonic crystal fibers (DCPCFs) have shown great optical characteristics but limited vibration amplitude due to large diameter. Besides reducing the damping of fiber cantilever, optimizing the structural of the actuator for lower energy dissipation also contributes to better driving capability. This paper presented an optimized actuator for driving a particular fiber cantilever in the view point of energy. Firstly, deformation energy of a bending fiber cantilever operating in resonant mode is investigated. Secondly, strain and stress analyses revealed that the four-plate actuator achieved lower energy dissipation. Then, finite-element simulations showed that the large-diameter fiber yielded an adequate vibration amplitude driven by a four-plate actuator, which was confirmed by experiments of our home-made four-plate actuator prototypes. Additionally, a NOME based on a DCPCF with a diameter of 350 μm driven by four-plate piezoelectric actuator has been developed. The NOME can excite and collect intrinsic second-harmonic and two-photon fluorescence signals with the excitation power of 10-30 mW and an adequate field of view of 200 μm, which suggest great potential applications in neuroscience and clinical diagnoses.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography

Tong Wu, Zhihua Ding, Kai Wang, Minghui Chen, and Chuan Wang
Opt. Express 17(16) 13819-13829 (2009)

Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues

Yicong Wu, Yuxin Leng, Jiefeng Xi, and Xingde Li
Opt. Express 17(10) 7907-7915 (2009)

Fiber optic microendoscopy for preclinical study of bacterial infection dynamics

Nooman Mufti, Ying Kong, Jeffrey D. Cirillo, and Kristen C. Maitland
Biomed. Opt. Express 2(5) 1121-1134 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
    [Crossref] [PubMed]
  2. J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
    [Crossref] [PubMed]
  3. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
    [Crossref] [PubMed]
  4. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
    [Crossref] [PubMed]
  5. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [Crossref] [PubMed]
  6. N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
    [Crossref]
  7. R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 7(05), 1330008 (2014).
    [Crossref]
  8. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
    [Crossref] [PubMed]
  9. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  10. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
    [Crossref] [PubMed]
  11. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]
  12. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
    [Crossref] [PubMed]
  13. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006).
    [Crossref] [PubMed]
  14. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y. C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett. 33(12), 1324–1326 (2008).
    [Crossref] [PubMed]
  15. J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102(3), 034701 (2007).
    [Crossref]
  16. D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
    [Crossref] [PubMed]
  17. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
    [Crossref] [PubMed]
  18. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [Crossref] [PubMed]
  19. Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
    [Crossref]
  20. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528–5534 (2005).
    [Crossref] [PubMed]
  21. D. Gross, W. Hauger, J. Schröder, W. A. Wall, and J. Bonet, Engineering Mechanics 2: Mechanics of Materials (Springer, 2011), Vol. 2.
  22. Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82(12), 123707 (2011).
    [Crossref] [PubMed]
  23. C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1938).
    [Crossref]
  24. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
    [Crossref] [PubMed]

2015 (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

2014 (3)

N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
[Crossref]

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 7(05), 1330008 (2014).
[Crossref]

D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
[Crossref] [PubMed]

2012 (1)

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

2011 (2)

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82(12), 123707 (2011).
[Crossref] [PubMed]

2010 (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

2009 (2)

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
[Crossref] [PubMed]

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102(3), 034701 (2007).
[Crossref]

2006 (2)

2005 (3)

2004 (2)

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
[Crossref] [PubMed]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

2001 (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

1938 (1)

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1938).
[Crossref]

Ahn, Y. C.

Akins, M. L.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Anderson, E. P.

Barretto, R. P. J.

Batrin, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Bourg-Heckly, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Braud, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brevier, J.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Burns, L. D.

Chen, N. G.

N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
[Crossref]

Chen, Z.

Cheung, E. L.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Cicchi, R.

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 7(05), 1330008 (2014).
[Crossref]

Cocker, E. D.

Cranfield, C.

Denk, W.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102(3), 034701 (2007).
[Crossref]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Do, D.

D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
[Crossref] [PubMed]

Druilhe, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Ducourthial, G.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

Fabert, M.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005).
[Crossref] [PubMed]

Fu, L.

Gan, X.

Göbel, W.

Greenberg, D. S.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

Grossmann, S.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

Gu, M.

Gweon, D. G.

D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
[Crossref] [PubMed]

Habert, R.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
[Crossref] [PubMed]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Jain, A.

Johnston, R. S.

Jung, J. C.

Jung, W.

Kerr, J. N. D.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
[Crossref] [PubMed]

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Krasieva, T. B.

Kudlinski, A.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Leclerc, P.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Li, M. J.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Li, X.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref] [PubMed]

Li, Z.

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82(12), 123707 (2011).
[Crossref] [PubMed]

Louradour, F.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Luby-Phelps, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

MacDonald, D. J.

Mahendroo, M.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Mansuryan, T.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

McCormic, D. T.

Murari, K.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Myaing, M. T.

Nimmerjahn, A.

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Pavone, F. S.

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 7(05), 1330008 (2014).
[Crossref]

Piyawattanametha, W.

Ra, H.

Rehman, S.

N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
[Crossref]

Reinhall, P. G.

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Sawinski, J.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102(3), 034701 (2007).
[Crossref]

Schnitzer, M. J.

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[Crossref] [PubMed]

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

Sheppard, C. J. R.

N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
[Crossref]

Smithwick, Q. Y. J.

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

Solgaard, O.

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

Su, J.

Tang, S.

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Thiberville, L.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Tomov, I. V.

Tromberg, B. J.

Vagners, J.

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

Vever-Bizet, C.

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Wallace, D. J.

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Xi, J.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Xie, H.

Xie, T.

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Yang, Z.

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82(12), 123707 (2011).
[Crossref] [PubMed]

Yoo, H.

D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
[Crossref] [PubMed]

Zener, C.

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1938).
[Crossref]

Zhang, Y.

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

J. Sawinski and W. Denk, “Miniature random-access fiber scanner for in vivo multiphoton imaging,” J. Appl. Phys. 102(3), 034701 (2007).
[Crossref]

J. Biomed. Opt. (1)

D. Do, H. Yoo, and D. G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” J. Biomed. Opt. 19(6), 066010 (2014).
[Crossref] [PubMed]

J. Biophotonics (2)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J. Biophotonics 3(5-6), 385–407 (2010).
[Crossref] [PubMed]

J. Dyn. Syst. Meas. Control (1)

Q. Y. J. Smithwick, P. G. Reinhall, J. Vagners, and E. J. Seibel, “A nonlinear state-space model of a resonating single fiber,” J. Dyn. Syst. Meas. Control 126(1), 88–101 (2004).
[Crossref]

J. Innov. Opt. Health Sci. (2)

N. G. Chen, S. Rehman, and C. J. R. Sheppard, “Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues,” J. Innov. Opt. Health Sci. 7(07), 1440001 (2014).
[Crossref]

R. Cicchi and F. S. Pavone, “Multimodal nonlinear microscopy: A powerful label-free method for supporting standard diagnostics on biological tissues,” J. Innov. Opt. Health Sci. 7(05), 1330008 (2014).
[Crossref]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Neuron (1)

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. (1)

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1938).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (3)

J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19557–19562 (2009).
[Crossref] [PubMed]

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011).
[Crossref] [PubMed]

Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Z. Li, Z. Yang, and L. Fu, “Scanning properties of a resonant fiber-optic piezoelectric scanner,” Rev. Sci. Instrum. 82(12), 123707 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Sci. Rep. 5, 18303 (2015).
[Crossref] [PubMed]

Other (1)

D. Gross, W. Hauger, J. Schröder, W. A. Wall, and J. Bonet, Engineering Mechanics 2: Mechanics of Materials (Springer, 2011), Vol. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Calculated strain profile of four-plate actuator. Strain distribution implies temperature fluxion. Inset showing Areas A and B depicts lengths and thicknesses on different scale for clarification.
Fig. 2
Fig. 2 Calculated stress profile of monolithic tube. Stress distributions in interfaces between electrodes implies that electrodes hamper each other.
Fig. 3
Fig. 3 Calculated frequency responses of scanners under driving voltage of 100 Vpp near first-order resonant peaks. Insets: Finite-element models for piezoelectric scanners using tube or four plates to drive SMF or DCPCF.
Fig. 4
Fig. 4 Measured vibration amplitudes of DCPCF cantilevers with different sizes of piezoelectric elements. W: width, T: thickness, PZT: piezoelectric ceramic transducer.
Fig. 5
Fig. 5 Scanner properties: (a) frequency responses around resonant peaks in two orthogonal directions, and (b) scanning range versus driving voltage at resonant frequencies.
Fig. 6
Fig. 6 Probe based on piezoelectric fiber scanner: (a) schematic of probe, showing scanner and GRIN lens fixed in steel housing, and (b) photograph of probe.
Fig. 7
Fig. 7 Layout of fiber-optic NOME.
Fig. 8
Fig. 8 Second-order intensity autocorrelation curves of laser pulses in DCPCF core with different powers and different wavelengths.
Fig. 9
Fig. 9 Two-photon images of (a) 200-nm-diameter and (b) 10-μm-diameter fluorescent beads. Fluorescence intensity profiles (dots) of 200-nm-diameter fluorescent bead in (c) lateral and (d) axial dimensions. Blue traces are Gaussian curves fitted to data points.
Fig. 10
Fig. 10 TPF image of mouse colon after topical application of acriflavine. Crypts and enterocytes are visible.
Fig. 11
Fig. 11 (a) Unaveraged intrinsic TPF image of unstained mouse lung. Lumens and aveolar walls are clearly visible. (b) Representative unaveraged intrinsic SHG image of rat tail tendon.
Fig. 12
Fig. 12 TPF images of GFP-tagged neurons in mouse brain slices. Excitation power through fiber core was about 10 mW at 900 nm. Cell bodies, axons, and dendrites are visible.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U= 0 L M 2 (x) 2EI dx .
U= EI 2 0 L [ v '' (x)] 2 dx.
v n (x)=A[cos μ n x L cosh μ n x L + sin μ n sinh μ n cos μ n +cosh μ n (sin μ n x L sinh μ n x L )].
Ψ n (t)=cos μ n tcosh μ n t+ sin μ n sinh μ n cos μ n +cosh μ n (sin μ n tsinh μ n t).
U= Eπ d 4 A 2 L 128 0 1 [ Ψ n '' ( t ) ] 2 dt .

Metrics