Abstract

Existing atmospheric correction methods retrieve surface reflectance keeping the same nominal spectral response functions (SRFs) as that of the airborne/spaceborne imaging spectrometer radiance data. Since the SRFs vary dependent on sensor type and configuration, the retrieved reflectance of the same ground object varies from sensor to sensor as well. This imposes evident limitations on data validation efforts between sensors at surface reflectance level. We propose a method to retrieve super-resolution reflectance at the surface, by combining the first-principles atmospheric correction method FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) with spectral super-resolution of imaging spectrometer radiance data. This approach is validated by comparing airborne AVIRIS (airborne visible/infrared imaging spectrometer) and spaceborne Hyperion data. The results demonstrate that the super-resolution reflectance in spectral bands with sufficiently high signal-to-noise ratio (SNR) serves as intermediate quantity to cross validate data originating from different imaging spectrometers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for the retrieval of columnar water vapor from hyperspectral remotely sensed data

Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni, and Ivan Pippi
Appl. Opt. 43(29) 5552-5563 (2004)

Land surface reflectance retrieval from optical hyperspectral data collected with an unmanned aerial vehicle platform

Yao-Kai Liu, Chuan-Rong Li, Ling-Ling Ma, Yong-Gang Qian, Ning Wang, Cai-Xia Gao, and Ling-Li Tang
Opt. Express 27(5) 7174-7195 (2019)

Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers

Luis Guanter, Karl Segl, Bernhard Sang, Luis Alonso, Hermann Kaufmann, and Jose Moreno
Opt. Express 17(14) 11594-11606 (2009)

References

  • View by:
  • |
  • |
  • |

  1. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
    [Crossref]
  2. B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
    [Crossref]
  3. M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
    [Crossref]
  4. T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
    [Crossref]
  5. C. J. Miller, “Performance assessment of ACORN atmospheric correction algorithm,” Proc. SPIE 4725, 438–449 (2002).
    [Crossref]
  6. R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction,” Int. J. Remote Sens. 23(13), 2631–2649 (2002).
    [Crossref]
  7. Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
    [Crossref]
  8. R. Richter, “Bandpass-resampling effects on the retrieval of radiance and surface reflectance,” Appl. Opt. 39(27), 5001–5005 (2000).
    [Crossref] [PubMed]
  9. R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
    [Crossref]
  10. F. A. Kruse, “The effects of spatial resolution, spectral resolution, and SNR on geologic mapping using hyperspectral data, northern Grapevine Mountains, Nevada,” in Proceedings of the 9th JPL Airborne Earth Science Workshop (JPL Publication, 2000), pp. 261–269.
  11. G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
    [Crossref]
  12. P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
    [Crossref]
  13. ASD Technical Guide, 3rd ed. (Analytical Spectral Devices, Inc., 1999).
  14. T. Dongxing, Z. Huijie, J. Guorui, and Y. Yan, “Analyzing the effect of synthetic scene resolution, sampling interval, and signal-to-noise ratio on hyperspectral imaging sensor simulations,” Appl. Opt. 53(28), 6375–6381 (2014).
    [Crossref] [PubMed]
  15. H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).
  16. G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
    [Crossref]
  17. M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
    [Crossref]
  18. B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
    [Crossref]
  19. Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
    [Crossref]
  20. F. A. Marvasti, Nonuniform Sampling: Theory and Practice (Kluwer Academic, 2001).
  21. G. Jia, H. Zhao, and N. Li, “Simulation of hyperspectral scene with full adjacency effect,” in Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), pp. III-724.
  22. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
    [Crossref]
  23. R. N. Clark and G. A. Swayze, “Evolution in imaging spectroscopy analysis and sensor signal-to-noise: an examination of how far we have come,” in Proceedings of the 6th JPL Airborne Earth Science Workshop (1996), pp. 49–53.
  24. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
    [Crossref]
  25. E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
    [Crossref]
  26. C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000).
    [Crossref]
  27. R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
    [Crossref]

2014 (1)

2013 (1)

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

2012 (1)

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

2011 (1)

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
[Crossref]

2010 (1)

H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).

2006 (1)

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

2005 (1)

E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
[Crossref]

2003 (4)

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
[Crossref]

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

2002 (3)

C. J. Miller, “Performance assessment of ACORN atmospheric correction algorithm,” Proc. SPIE 4725, 438–449 (2002).
[Crossref]

R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction,” Int. J. Remote Sens. 23(13), 2631–2649 (2002).
[Crossref]

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

2000 (3)

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000).
[Crossref]

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

R. Richter, “Bandpass-resampling effects on the retrieval of radiance and surface reflectance,” Appl. Opt. 39(27), 5001–5005 (2000).
[Crossref] [PubMed]

1999 (1)

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

1998 (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

1997 (1)

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

1993 (1)

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
[Crossref]

1990 (1)

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

Acharya, P. K.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Adler-Golden, S.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

Adler-Golden, S. M.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Anderson, G. P.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Barry, P. S.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Beiso, D.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Berk, A.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Bernstein, L. S.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Burke, H.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Burke, H. K.

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

Carman, S. L.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Chang, C.-I.

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000).
[Crossref]

Chetwynd, J. H.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chrien, T. G.

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Christophe, E.

E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
[Crossref]

Clark, R. N.

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

R. N. Clark and G. A. Swayze, “Evolution in imaging spectroscopy analysis and sensor signal-to-noise: an examination of how far we have come,” in Proceedings of the 6th JPL Airborne Earth Science Workshop (1996), pp. 49–53.

D’Odorico, P.

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

Damm, A.

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

Dangel, S.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Dongxing, T.

Dothe, H.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Felde, G. W.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Flynn, L.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Fox, M.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

Gao, B.-C.

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
[Crossref]

Gardner, J. A.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Goetz, A. F. H.

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
[Crossref]

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
[Crossref]

Gonsamo, A.

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

Gorelick, N. S.

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Griffin, M. K.

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

Guorui, J.

Heidebrecht, K. B.

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
[Crossref]

Hoke, M. L.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Hoke, M. P.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Huijie, Z.

Jeong, L. S.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Jia, G.

H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).

Kaiser, R. D.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Kaufman, Y. J.

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Kindel, B. C.

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
[Crossref]

King, T. V. V.

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

Klejwa, M.

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

Lee, J.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

Leger, D.

E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
[Crossref]

Levine, R. Y.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Li, N.

H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).

Li, R.-R.

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Mailhes, C.

E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
[Crossref]

Mandl, D.

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

Martonchik, J. V.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Matthew, M. W.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Mello, J. B.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Miller, C. J.

C. J. Miller, “Performance assessment of ACORN atmospheric correction algorithm,” Proc. SPIE 4725, 438–449 (2002).
[Crossref]

Miller, D. P.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Miller, J.

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

Müller, A.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
[Crossref]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Painter, T. H.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Pearlman, J. S.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Perkins, T.

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

Pukall, B.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Qu, Z.

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
[Crossref]

Ratkowski, A.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Ratkowski, A. J.

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Remer, L. A.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Richter, R.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
[Crossref]

R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction,” Int. J. Remote Sens. 23(13), 2631–2649 (2002).
[Crossref]

R. Richter, “Bandpass-resampling effects on the retrieval of radiance and surface reflectance,” Appl. Opt. 39(27), 5001–5005 (2000).
[Crossref] [PubMed]

Richtsmeier, S. C.

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Schaepman, M. E.

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schaepman-Strub, G.

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

Schläpfer, D.

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
[Crossref]

R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction,” Int. J. Remote Sens. 23(13), 2631–2649 (2002).
[Crossref]

Segal, C. C.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Shepanski, J.

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Swayze, G.

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

Swayze, G. A.

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

R. N. Clark and G. A. Swayze, “Evolution in imaging spectroscopy analysis and sensor signal-to-noise: an examination of how far we have come,” in Proceedings of the 6th JPL Airborne Earth Science Workshop (1996), pp. 49–53.

Tanré, D.

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

Vergo, N.

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

Wald, A. E.

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Yan, Y.

Zhao, H.

H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).

Appl. Opt. (2)

Geophys. Res. Lett. (1)

B.-C. Gao, Y. J. Kaufman, D. Tanré, and R.-R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38-μm and 1.24-μm channels,” Geophys. Res. Lett. 29(18), 1890 (2002).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (7)

Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel–correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Trans. Geosci. Remote Sens. 35(5), 1286–1298 (1997).
[Crossref]

Z. Qu, B. C. Kindel, and A. F. H. Goetz, “The high accuracy atmospheric correction for hyperspectral data (HATCH) model,” IEEE Trans. Geosci. Remote Sens. 41(6), 1223–1231 (2003).
[Crossref]

H. Zhao, G. Jia, and N. Li, “Transformation from hyperspectral radiance data to data of other sensors based on spectral superresolution,” IEEE Trans. Geosci. Remote Sens. 48(11), 3903–3912 (2010).

P. D’Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, “Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity,” IEEE Trans. Geosci. Remote Sens. 51(3), 1336–1348 (2013).
[Crossref]

J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion: a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41(6), 1160–1173 (2003).
[Crossref]

E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43(9), 2103–2114 (2005).
[Crossref]

R. Richter, D. Schläpfer, and A. Müller, “Operational atmospheric correction for imaging spectrometers accounting for the smile effect,” IEEE Trans. Geosci. Remote Sens. 49(5), 1772–1780 (2011).
[Crossref]

IEEE Trans. Inf. Theory (1)

C.-I. Chang, “An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis,” IEEE Trans. Inf. Theory 46(5), 1927–1932 (2000).
[Crossref]

Int. J. Remote Sens. (1)

R. Richter and D. Schläpfer, “Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: atmospheric/topographic correction,” Int. J. Remote Sens. 23(13), 2631–2649 (2002).
[Crossref]

J. Geophys. Res. (2)

R. N. Clark, T. V. V. King, M. Klejwa, G. Swayze, and N. Vergo, “High spectral resolution reflectance spectroscopy of minerals,” J. Geophys. Res. 95(B8), 12653–12680 (1990).
[Crossref]

G. A. Swayze, R. N. Clark, A. F. H. Goetz, T. G. Chrien, and N. S. Gorelick, “Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm,” J. Geophys. Res. 108(E9), 5105 (2003).
[Crossref]

Opt. Eng. (1)

T. Perkins, S. Adler-Golden, M. W. Matthew, A. Berk, L. S. Bernstein, J. Lee, and M. Fox, “Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery,” Opt. Eng. 51(11), 111707 (2012).
[Crossref]

Proc. SPIE (4)

C. J. Miller, “Performance assessment of ACORN atmospheric correction algorithm,” Proc. SPIE 4725, 438–449 (2002).
[Crossref]

G. P. Anderson, A. Berk, P. K. Acharya, M. W. Matthew, L. S. Bernstein, J. H. Chetwynd, H. Dothe, S. M. Adler-Golden, A. J. Ratkowski, G. W. Felde, J. A. Gardner, M. L. Hoke, S. C. Richtsmeier, B. Pukall, J. B. Mello, and L. S. Jeong, “MODTRAN4: radiative transfer modeling for remote sensing,” Proc. SPIE 3866, 2–10 (1999).
[Crossref]

M. K. Griffin, H. K. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for EO-1 Hyperion imagery,” Proc. SPIE 5093, 483–494 (2003).
[Crossref]

M. W. Matthew, S. M. Adler-Golden, A. Berk, S. C. Richtsmeier, R. Y. Levine, L. S. Bernstein, P. K. Acharya, G. P. Anderson, G. W. Felde, M. P. Hoke, A. Ratkowski, H. Burke, R. D. Kaiser, and D. P. Miller, “Status of atmospheric correction using a MODTRAN4-based algorithm,” Proc. SPIE 4049, 199–207 (2000).
[Crossref]

Remote Sens. Environ. (3)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103(1), 27–42 (2006).
[Crossref]

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation of scaled surface reflectance from AVIRIS data,” Remote Sens. Environ. 44(2-3), 165–178 (1993).
[Crossref]

Other (5)

R. N. Clark and G. A. Swayze, “Evolution in imaging spectroscopy analysis and sensor signal-to-noise: an examination of how far we have come,” in Proceedings of the 6th JPL Airborne Earth Science Workshop (1996), pp. 49–53.

F. A. Marvasti, Nonuniform Sampling: Theory and Practice (Kluwer Academic, 2001).

G. Jia, H. Zhao, and N. Li, “Simulation of hyperspectral scene with full adjacency effect,” in Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), pp. III-724.

F. A. Kruse, “The effects of spatial resolution, spectral resolution, and SNR on geologic mapping using hyperspectral data, northern Grapevine Mountains, Nevada,” in Proceedings of the 9th JPL Airborne Earth Science Workshop (JPL Publication, 2000), pp. 261–269.

ASD Technical Guide, 3rd ed. (Analytical Spectral Devices, Inc., 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the effect of spectral super-resolution around the water vapor absorption feature at 940 nm. Taking MODTRAN4-simulated 1-nm spectral resolution top of atmosphere radiance as the real spectrum, simulated Hyperion spectrum was generated by convolution of it, and super-resolution spectrum was retrieved from the simulated Hyperion spectrum. Adopted from [15].
Fig. 2
Fig. 2 True color composition of AVIRIS image and the ROIs corresponding to Na-Montmorillonite (red block), Kaolinite (green blocks), K-Alunite (blue blocks), and Muscovite (yellow block) respectively.
Fig. 3
Fig. 3 The ROI average reflectance spectra of (a) Na-Montmorillonite, (b) Kaolinite, (c) K-Alunite, and (d) Muscovite from AVIRIS FLAASH reflectance, super-resolution reflectance, and convolution result of the super-resolution reflectance.
Fig. 4
Fig. 4 Relative deviation of the convolved spectra with reference to the AVIRIS FLAASH spectra.
Fig. 5
Fig. 5 Comparison of ROI average reflectance spectra of (a) Na-Montmorillonite, (b) Kaolinite, (c) K-Alunite, and (d) Muscovite for Hyperion FLAASH reflectance, AVIRIS FLAASH reflectance, Hyperion-SRF-convolved AVIRIS super-resolution reflectance, and Hyperion-SRF-convolved AVIRIS FLAASH reflectance.
Fig. 6
Fig. 6 (a) SSS and (b) SID values for AVIRIS results relative to Hyperion FLAASH reflectance.
Fig. 7
Fig. 7 The super-resolution reflectance of Kaolinite pixel from AVIRIS and Hyperion data, shown in spectral regions of (a) 400 nm - 1000 nm and (b) 2000 nm - 2500 nm.
Fig. 8
Fig. 8 The real, Hyperion, and super-resolution radiance spectra, with the relative deviation of the super-resolution spectrum, in the spectral range 2100 nm – 2300nm.
Fig. 9
Fig. 9 The flattening and overshoot effects around steep feature of O2 in the super-resolution radiance. (a) Adopted from [15]. Taking MODTRAN4-simulated 1-nm spectral resolution top of atmosphere radiance as the real spectrum, simulated Hyperion spectrum was generated by convolution of it, and super-resolution spectrum was retrieved from the simulated Hyperion spectrum. (b) Relative deviation of the super-resolution spectrum with reference to the real spectrum.

Tables (2)

Tables Icon

Table 1 Settings in the reflectance retrieval.

Tables Icon

Table 2 Settings in the MODTRAN calculation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L= Aρ 1 ρ e S + B ρ e 1 ρ e S + L a ,
L 0 (λ)=spline_interp( L ¯ 0 )=spline_interp( L ¯ ),
L ¯ i 'k = L k (λ) g i (λ)dλ / g i (λ)dλ i=1,,N ,
L ¯ 'k ={ L ¯ i 'k |i=1,,N},
L ¯ k+1 = L ¯ k +a( L ¯ L ¯ 'k ),
L k+1 (λ)=spline_interp( L ¯ k+1 ),
L e = (A+B) ρ e 1 ρ e S + L a .
SSS= 1 N k=1 N ( x k y k ) 2 + (1 ( 1 N1 k=1 N ( x k x ¯ )( y k y ¯ ) σ x σ y ) 2 ) 2 ,
SID= k=1 N p k log( p k / q k ) + k=1 N q k log( q k / p k ) ,

Metrics