Abstract

Determination of molecular orientation at interfaces by vibrational sum frequency generation spectroscopy (VSFG) requires measurements using at least two different polarization combinations of the incoming visible, IR, and generated SFG beams. We present a new method for the simultaneous collection of different VSFG polarization outputs by use of a modified 4f pulseshaper to create a simple frequency comb. Via the frequency comb, two visible pulses are separated spectrally but aligned in space and time to interact at the sample with mixed polarization IR light. This produces two different VSFG outputs that are separated by their frequencies at the monochromator rather than their polarizations. Spectra were collected from organic thin films with different polarization combinations to show the reliability of the method. The results show that the optical arrangement is immune to fluctuations in laser power, beam pointing, and IR spectral shape.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simplified sum frequency generation using a narrow free-spectral-range etalon

Isaac G. Prichett and Aaron M. Massari
Opt. Lett. 43(19) 4747-4750 (2018)

Vibrational sum frequency generation spectroscopy using inverted visible pulses

Champika Weeraman, Steven A. Mitchell, Rune Lausten, Linda J. Johnston, and Albert Stolow
Opt. Express 18(11) 11483-11494 (2010)

Ti:sapphire, broadband vibrational sum-frequency generation spectrometer with a counter-propagating geometry

Feng Ding, Qin Zhong, Michael R. Brindza, John T. Fourkas, and Robert A. Walker
Opt. Express 17(17) 14665-14675 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
    [Crossref] [PubMed]
  2. M. R. Brindza and R. A. Walker, “Differentiating solvation mechanisms at polar solid/liquid interfaces,” J. Am. Chem. Soc. 131(17), 6207–6214 (2009).
    [Crossref] [PubMed]
  3. S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
    [Crossref] [PubMed]
  4. K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
    [Crossref]
  5. A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
    [Crossref]
  6. G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
    [Crossref]
  7. S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
    [Crossref] [PubMed]
  8. S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
    [Crossref]
  9. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, Inc., 1984).
  10. H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
    [Crossref]
  11. P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
    [Crossref]
  12. R. W. Boyd, Nonlinear Optics, Third Edition (Academic, 2008).
  13. G. J. Simpson and K. L. Rowlen, “An SHG magic angle: Dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121(11), 2635–2636 (1999).
    [Crossref]
  14. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
    [Crossref] [PubMed]
  15. S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
    [Crossref] [PubMed]
  16. T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
    [Crossref]
  17. T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
    [Crossref]
  18. T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
    [Crossref]
  19. C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
    [Crossref]
  20. Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
    [Crossref]
  21. P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
    [Crossref]
  22. I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
    [Crossref] [PubMed]
  23. K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110(4), 1807–1813 (2006).
    [Crossref] [PubMed]
  24. S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
    [Crossref] [PubMed]
  25. Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
    [Crossref] [PubMed]
  26. T. C. Anglin and A. M. Massari, “Polarization-multiplexed vibrational sum frequency generation for comprehensive simultaneous characterization of interfaces,” Opt. Lett. 37(10), 1754–1756 (2012).
    [Crossref] [PubMed]
  27. M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
    [Crossref]
  28. M. L. McDermott and P. B. Petersen, “Robust self-referencing method for chiral sum frequency generation spectroscopy,” J. Phys. Chem. B 119(38), 12417–12423 (2015).
    [Crossref] [PubMed]
  29. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1(10), 1003–1006 (1984).
    [Crossref]
  30. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  31. D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation,” J. Chem. Phys. 142(2), 024703 (2015).
    [Crossref] [PubMed]
  32. D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms,” J. Chem. Phys. 142(2), 024704 (2015).
    [Crossref] [PubMed]
  33. D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
    [Crossref] [PubMed]
  34. D. B. O’Brien and A. M. Massari, “Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies,” J. Opt. Soc. Am. B 30(6), 1503–1512 (2013).
    [Crossref]
  35. A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
    [Crossref]

2016 (1)

Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
[Crossref]

2015 (3)

M. L. McDermott and P. B. Petersen, “Robust self-referencing method for chiral sum frequency generation spectroscopy,” J. Phys. Chem. B 119(38), 12417–12423 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation,” J. Chem. Phys. 142(2), 024703 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms,” J. Chem. Phys. 142(2), 024704 (2015).
[Crossref] [PubMed]

2014 (1)

T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
[Crossref]

2013 (2)

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

D. B. O’Brien and A. M. Massari, “Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies,” J. Opt. Soc. Am. B 30(6), 1503–1512 (2013).
[Crossref]

2012 (2)

T. C. Anglin and A. M. Massari, “Polarization-multiplexed vibrational sum frequency generation for comprehensive simultaneous characterization of interfaces,” Opt. Lett. 37(10), 1754–1756 (2012).
[Crossref] [PubMed]

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

2011 (6)

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
[Crossref] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
[Crossref]

T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
[Crossref]

2009 (4)

M. R. Brindza and R. A. Walker, “Differentiating solvation mechanisms at polar solid/liquid interfaces,” J. Am. Chem. Soc. 131(17), 6207–6214 (2009).
[Crossref] [PubMed]

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
[Crossref]

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
[Crossref] [PubMed]

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

2008 (1)

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

2007 (3)

C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
[Crossref] [PubMed]

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

2006 (2)

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110(4), 1807–1813 (2006).
[Crossref] [PubMed]

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

2005 (4)

A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
[Crossref]

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
[Crossref]

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

2004 (1)

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

1999 (1)

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: Dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121(11), 2635–2636 (1999).
[Crossref]

1997 (1)

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

1984 (1)

Aliaga, C.

C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
[Crossref] [PubMed]

Allen, H. C.

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Anglin, T. C.

T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
[Crossref]

T. C. Anglin and A. M. Massari, “Polarization-multiplexed vibrational sum frequency generation for comprehensive simultaneous characterization of interfaces,” Opt. Lett. 37(10), 1754–1756 (2012).
[Crossref] [PubMed]

D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
[Crossref] [PubMed]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
[Crossref]

T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
[Crossref]

Baldelli, S.

C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
[Crossref] [PubMed]

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110(4), 1807–1813 (2006).
[Crossref] [PubMed]

Bedzyk, M. J.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Benderskii, A. V.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

Bonn, M.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
[Crossref]

Bordenyuk, A. N.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

Brindza, M. R.

M. R. Brindza and R. A. Walker, “Differentiating solvation mechanisms at polar solid/liquid interfaces,” J. Am. Chem. Soc. 131(17), 6207–6214 (2009).
[Crossref] [PubMed]

Burkhart, B.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Caudano, Y.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Cimatu, K.

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110(4), 1807–1813 (2006).
[Crossref] [PubMed]

Davies, P. B.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
[Crossref]

Dhar, P.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Dlott, D. D.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

Dreesen, L.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Emery, J. D.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Facchetti, A.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Fork, R. L.

Gan, W.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

Geiger, F. M.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Gopalakrishnan, S.

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Gordon, J. P.

Hambir, S. A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

Hashimoto, K.

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

Hennek, J. W.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Hore, D. K.

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
[Crossref]

Humbert, C.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Ishiyama, T.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

Jayathilake, H. D.

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

Jena, K. C.

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
[Crossref]

Kearns, P. M.

Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
[Crossref]

Kewalramani, S.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Khlyabich, P. P.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Kim, D.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

Kleyn, A. W.

S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
[Crossref]

Kuo, M.

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Lagutchev, A.

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

Lambert, A. G.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
[Crossref]

Lane, A. P.

T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
[Crossref]

Lee, T. K.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

Lemaire, J. J.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Liu, D.

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Lu, G. Q.

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

Lu, R.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

Malyk, S.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Mani, A. A.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Marks, T. J.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Martinez, O. E.

Massari, A. M.

Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
[Crossref]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation,” J. Chem. Phys. 142(2), 024703 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms,” J. Chem. Phys. 142(2), 024704 (2015).
[Crossref] [PubMed]

T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
[Crossref]

D. B. O’Brien and A. M. Massari, “Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies,” J. Opt. Soc. Am. B 30(6), 1503–1512 (2013).
[Crossref]

T. C. Anglin and A. M. Massari, “Polarization-multiplexed vibrational sum frequency generation for comprehensive simultaneous characterization of interfaces,” Opt. Lett. 37(10), 1754–1756 (2012).
[Crossref] [PubMed]

D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
[Crossref] [PubMed]

T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
[Crossref]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
[Crossref]

McDermott, M. L.

M. L. McDermott and P. B. Petersen, “Robust self-referencing method for chiral sum frequency generation spectroscopy,” J. Phys. Chem. B 119(38), 12417–12423 (2015).
[Crossref] [PubMed]

Miranda, P. B.

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

Morita, A.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

Muller, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

Neivandt, D. J.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
[Crossref]

Nihonyanagi, S.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
[Crossref] [PubMed]

O’Brien, D. B.

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms,” J. Chem. Phys. 142(2), 024704 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation,” J. Chem. Phys. 142(2), 024703 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies,” J. Opt. Soc. Am. B 30(6), 1503–1512 (2013).
[Crossref]

D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
[Crossref] [PubMed]

Peremans, A.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Petersen, P. B.

M. L. McDermott and P. B. Petersen, “Robust self-referencing method for chiral sum frequency generation spectroscopy,” J. Phys. Chem. B 119(38), 12417–12423 (2015).
[Crossref] [PubMed]

Pflumio, V.

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

Pieniazek, P. A.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

Rao, Y.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

Roberts, S. T.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Roke, S.

S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
[Crossref]

Rowlen, K. L.

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: Dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121(11), 2635–2636 (1999).
[Crossref]

Saijo, H.

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

Santos, C. S.

C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
[Crossref] [PubMed]

Sartenaer, Y.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Shalhout, F. Y.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

Shen, Y. R.

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

Shultz, M. J.

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Silien, C.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Simpson, G. J.

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: Dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121(11), 2635–2636 (1999).
[Crossref]

Skinner, J. L.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

Smits, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

Sohrabpour, Z.

Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
[Crossref]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
[Crossref]

Sovago, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

Speros, J. C.

T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
[Crossref]

Stiopkin, I. V.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

Tahara, T.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
[Crossref] [PubMed]

Tajima, K.

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

Thiry, P. A.

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Thompson, B. C.

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Tong, Y.

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

Walker, R. A.

M. R. Brindza and R. A. Walker, “Differentiating solvation mechanisms at polar solid/liquid interfaces,” J. Am. Chem. Soc. 131(17), 6207–6214 (2009).
[Crossref] [PubMed]

Walter, S. R.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Wang, H. F.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

Weeraman, C.

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

Wei, Q.

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Wieckowski, A.

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

Wu, B. H.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

Wurpel, G. W. H.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

Yamaguchi, S.

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
[Crossref] [PubMed]

Ye, S.

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

Youn, J.

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Appl. Spectrosc. Rev. (1)

A. G. Lambert, P. B. Davies, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40(2), 103–145 (2005).
[Crossref]

Appl. Surf. Sci. (1)

C. Humbert, Y. Caudano, L. Dreesen, Y. Sartenaer, A. A. Mani, C. Silien, J. J. Lemaire, P. A. Thiry, and A. Peremans, “Self-assembled organic and fullerene monolayers characterisation by two-colour SFG spectroscopy: a pathway to meet doubly resonant SFG process,” Appl. Surf. Sci. 237(1-4), 463–468 (2004).
[Crossref]

Chem. Phys. Lett. (1)

P. B. Miranda, V. Pflumio, H. Saijo, and Y. R. Shen, “Conformation of surfactant monolayers at solid/liquid interfaces,” Chem. Phys. Lett. 264(3-4), 387–392 (1997).
[Crossref]

Chem. Rev. (1)

S. Gopalakrishnan, D. Liu, H. C. Allen, M. Kuo, and M. J. Shultz, “Vibrational spectroscopic studies of aqueous interfaces: salts, acids, bases, and nanodrops,” Chem. Rev. 106(4), 1155–1175 (2006).
[Crossref] [PubMed]

Int. Rev. Phys. Chem. (1)

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[Crossref]

J. Am. Chem. Soc. (6)

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: Dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121(11), 2635–2636 (1999).
[Crossref]

I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130(7), 2271–2275 (2008).
[Crossref] [PubMed]

M. R. Brindza and R. A. Walker, “Differentiating solvation mechanisms at polar solid/liquid interfaces,” J. Am. Chem. Soc. 131(17), 6207–6214 (2009).
[Crossref] [PubMed]

S. Nihonyanagi, T. Ishiyama, T. K. Lee, S. Yamaguchi, M. Bonn, A. Morita, and T. Tahara, “Unified molecular view of the air/water interface based on experimental and theoretical χ(2) spectra of an isotopically diluted water surface,” J. Am. Chem. Soc. 133(42), 16875–16880 (2011).
[Crossref] [PubMed]

S. R. Walter, J. Youn, J. D. Emery, S. Kewalramani, J. W. Hennek, M. J. Bedzyk, A. Facchetti, T. J. Marks, and F. M. Geiger, “In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities,” J. Am. Chem. Soc. 134(28), 11726–11733 (2012).
[Crossref] [PubMed]

Q. Wei, K. Tajima, Y. Tong, S. Ye, and K. Hashimoto, “Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors,” J. Am. Chem. Soc. 131(48), 17597–17604 (2009).
[Crossref] [PubMed]

J. Chem. Phys. (3)

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation,” J. Chem. Phys. 142(2), 024703 (2015).
[Crossref] [PubMed]

D. B. O’Brien and A. M. Massari, “Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. II. Consideration for higher order terms,” J. Chem. Phys. 142(2), 024704 (2015).
[Crossref] [PubMed]

S. Nihonyanagi, S. Yamaguchi, and T. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130(20), 204704 (2009).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

T. C. Anglin, A. P. Lane, and A. M. Massari, “Real-time structural evolution at the interface of an organic transistor during thermal annealing,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(17), 3390–3400 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

M. L. McDermott and P. B. Petersen, “Robust self-referencing method for chiral sum frequency generation spectroscopy,” J. Phys. Chem. B 119(38), 12417–12423 (2015).
[Crossref] [PubMed]

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110(4), 1807–1813 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (7)

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Muller, and M. Bonn, “Polarization-resolved broad-bandwidth sum-frequency generation spectroscopy of monolayer relaxation,” J. Phys. Chem. C 111(25), 8878–8883 (2007).
[Crossref]

A. Lagutchev, S. A. Hambir, and D. D. Dlott, “Nonresonant background suppression in broadband vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. C 111(37), 13645–13647 (2007).
[Crossref]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, “Nonlinear spectroscopic markers of structural change during charge accumulation in organic field-effect transistors,” J. Phys. Chem. C 115(41), 20258–20266 (2011).
[Crossref]

T. C. Anglin, J. C. Speros, and A. M. Massari, “Interfacial ring orientation in polythiophene field-effect transistors on functionalized dielectrics,” J. Phys. Chem. C 115(32), 16027–16036 (2011).
[Crossref]

P. Dhar, P. P. Khlyabich, B. Burkhart, S. T. Roberts, S. Malyk, B. C. Thompson, and A. V. Benderskii, “Annealing-induced changes in the molecular orientation of poly-3-hexylthiophene at buried interfaces,” J. Phys. Chem. C 117(29), 15213–15220 (2013).
[Crossref]

Z. Sohrabpour, P. M. Kearns, and A. M. Massari, “Vibrational sum frequency generation spectroscopy of fullerene at dielectric interfaces,” J. Phys. Chem. C 120(3), 1666–1672 (2016).
[Crossref]

K. C. Jena and D. K. Hore, “Variation of ionic strength reveals the interfacial water structure at a charged mineral surface,” J. Phys. Chem. C 113(34), 15364–15372 (2009).
[Crossref]

Langmuir (1)

D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27(22), 13940–13949 (2011).
[Crossref] [PubMed]

Nature (1)

I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner, and A. V. Benderskii, “Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy,” Nature 474(7350), 192–195 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

C. Aliaga, C. S. Santos, and S. Baldelli, “Surface chemistry of room-temperature ionic liquids,” Phys. Chem. Chem. Phys. 9(28), 3683–3700 (2007).
[Crossref] [PubMed]

Surf. Sci. (2)

S. Roke, A. W. Kleyn, and M. Bonn, “Femtosecond sum frequency generation at the metal-liquid interface,” Surf. Sci. 593(1-3), 79–88 (2005).
[Crossref]

G. Q. Lu, A. Lagutchev, D. D. Dlott, and A. Wieckowski, “Quantitative vibrational sum-frequency generation spectroscopy of thin layer electrochemistry: CO on a Pt electrode,” Surf. Sci. 585(1-2), 3–16 (2005).
[Crossref]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, Inc., 1984).

R. W. Boyd, Nonlinear Optics, Third Edition (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Right: Diagram of the modified 4f pulseshaper to produce a simple frequency comb showing the relative positions of the diffraction grating, lens, mirrors, and slits. The mirror after the lens directs half of the light to a second slit that is retroreflected back and recombined at the grating with the shaped throughput from the other slit. Left: The input and output spectrum of the modified pulse shaper.
Fig. 2
Fig. 2 Diagram of the retiming portion of the visible beam path. The frequency comb ‘teeth’ are separated by a dichroic beamsplitter for indepent timing, pointing, and polarization control. The 790 nm beam polarization is controlled by a halfwave plate and a thin film polarizer. The 806 nm polarization is cleaned up by a Glan-Thompson polarizer.
Fig. 3
Fig. 3 a) VSFG spectrum of ZnO thin film and b) a 6T thin film, both collected with the ppp polarization combination. The bottom frequency axis has been created by down converting the summed frequencies with the known center wavelengths of the frequency comb teeth.
Fig. 4
Fig. 4 a) VSFG spectra of a PTCDI thin film collected in ssp (black) and sps (red), and b) using sps (blue) and sps (green) polarizations. c) ssp and sps (from part a) and d) sps and sps (from part b) after normalization by the ppp reference spectrum.

Metrics