Abstract

A continuous single-frequency tunable blue laser at 447.3 nm is developed by external-cavity frequency doubling of a tapered amplifier-boosted continuous-wave diode laser at cesium (Cs) D1 line. A maximum blue power of 178 mW with 50.8% conversion efficiency is obtained. It can be continuously tuned over a range around 1.6 GHz as the diode laser frequency is scanned across the F=4F=3 transition of 133Cs D1 line. The generated tunable and stable blue laser source has potential applications in constructing quantum light-atom interfaces in quantum networks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 130  mW of 397.5  nm tunable laser via ring-cavity-enhanced frequency doubling

Yashuai Han, Xin Wen, Jiandong Bai, Baodong Yang, Yanhua Wang, Jun He, and Junmin Wang
J. Opt. Soc. Am. B 31(8) 1942-1947 (2014)

External-cavity broad-area laser diode operating on the D1 line of cesium

D. Cassettari, E. Arimondo, and P. Verkerk
Opt. Lett. 23(14) 1135-1137 (1998)

Pulse control in a wide frequency range for a quasi-continuous wave diode-pumped cesium atom vapor laser by a pump modulation in the spectral domain

Seongjin Hong, Byungjoo Kong, Yong Soo Lee, Sanggwon Song, Seokjin Kim, and Kyunghwan Oh
Opt. Express 26(20) 26679-26687 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. G. Danielmeyer and W. N. Leibolt, “Stable tunable single-frequency Nd:YAG laser,” Appl. Phys. (Berl.) 3(3), 193–198 (1974).
    [Crossref]
  2. G. J. Friel, A. J. Kemp, T. K. Lake, and B. D. Sinclair, “Compact and efficient Nd:YVO 4 laser that generates a tunable single-frequency green output,” Appl. Opt. 39(24), 4333–4337 (2000).
    [Crossref] [PubMed]
  3. Y. Louyer, M. D. Plimmer, P. Juncar, M. E. Himbert, F. Balembois, and P. Georges, “Nd:YLF laser at 1.3 microm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems,” Appl. Opt. 42(24), 4867–4870 (2003).
    [Crossref] [PubMed]
  4. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
    [Crossref]
  5. R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J. J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
    [Crossref] [PubMed]
  6. F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
    [Crossref]
  7. U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
    [Crossref]
  8. M. Pizzocaro, D. Calonico, P. C. Pastor, J. Catani, G. A. Costanzo, F. Levi, and L. Lorini, “Efficient frequency doubling at 399 nm,” Appl. Opt. 53(16), 3388–3392 (2014).
    [Crossref] [PubMed]
  9. C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
    [Crossref]
  10. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
    [Crossref]
  11. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
    [Crossref]
  12. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
    [Crossref]
  13. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  14. S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17(5), 3777–3781 (2009).
    [Crossref] [PubMed]
  15. T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
    [Crossref] [PubMed]
  16. G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
    [Crossref]
  17. A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
    [Crossref]
  18. J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
    [Crossref]
  19. Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
    [Crossref] [PubMed]
  20. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
    [Crossref] [PubMed]
  21. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
    [Crossref] [PubMed]
  22. D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100(9), 093603 (2008).
    [Crossref] [PubMed]
  23. B. V. Zhdanov, Y. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, “Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal,” Opt. Express 16(22), 17585–17590 (2008).
    [Crossref] [PubMed]
  24. B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
    [Crossref]
  25. B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
    [Crossref]
  26. T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
    [Crossref]
  27. TOPTICA Photonics AG, “SHG pro,” http://www.toptica.com/products/research_grade_diode_lasers/frequency_converted_diode_lasers/shg_pro_stand_alone_second_harmonic_generator_module.html .
  28. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  29. L. S. Cruz and F. C. Cruz, “External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO,” Opt. Express 15(19), 11913–11921 (2007).
    [Crossref] [PubMed]
  30. Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser,” Appl. Opt. 49(9), 1666–1670 (2010).
    [Crossref] [PubMed]
  31. J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson-Engels, B. Sumpf, G. Erbert, and P. M. Petersen, “High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser,” Opt. Express 16(4), 2486–2493 (2008).
    [Crossref] [PubMed]
  32. U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JTu5A.65.
    [Crossref]
  33. R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
    [Crossref]
  34. M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
    [Crossref]
  35. C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency uv radiation,” J. Phys. D Appl. Phys. 12(3), 355–368 (1979).
    [Crossref]
  36. I. Juwiler and A. Arie, “Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity,” Appl. Opt. 42(36), 7163–7169 (2003).
    [Crossref] [PubMed]
  37. R. W. Fox, C. W. Oates, and L. W. Hollberg, Stabilizing Diode Lasers to High-Finesse Cavities (Elsevier Science, 2002).
  38. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
    [Crossref]

2014 (1)

2012 (1)

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

2011 (1)

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

2010 (3)

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

Y. H. Cha, K. H. Ko, G. Lim, J. M. Han, H. M. Park, T. S. Kim, and D. Y. Jeong, “Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser,” Appl. Opt. 49(9), 1666–1670 (2010).
[Crossref] [PubMed]

2009 (2)

S. Burks, J. Ortalo, A. Chiummo, X. Jia, F. Villa, A. Bramati, J. Laurat, and E. Giacobino, “Vacuum squeezed light for atomic memories at the D2 cesium line,” Opt. Express 17(5), 3777–3781 (2009).
[Crossref] [PubMed]

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

2008 (7)

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100(9), 093603 (2008).
[Crossref] [PubMed]

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

J. H. Lundeman, O. B. Jensen, P. E. Andersen, S. Andersson-Engels, B. Sumpf, G. Erbert, and P. M. Petersen, “High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser,” Opt. Express 16(4), 2486–2493 (2008).
[Crossref] [PubMed]

B. V. Zhdanov, Y. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, “Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal,” Opt. Express 16(22), 17585–17590 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

T. Tanimura, D. Akamatsu, Y. Yokoi, A. Furusawa, and M. Kozuma, “Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4.,” Opt. Lett. 31(15), 2344–2346 (2006).
[Crossref] [PubMed]

2005 (1)

R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

2003 (3)

2002 (2)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

2000 (1)

1999 (1)

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

1992 (1)

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

1991 (1)

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

1986 (1)

1979 (1)

C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency uv radiation,” J. Phys. D Appl. Phys. 12(3), 355–368 (1979).
[Crossref]

1974 (1)

H. G. Danielmeyer and W. N. Leibolt, “Stable tunable single-frequency Nd:YAG laser,” Appl. Phys. (Berl.) 3(3), 193–198 (1974).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Akamatsu, D.

Andersen, P. E.

Andersson-Engels, S.

Appel, J.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Arie, A.

Bachor, H.-A.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Badr, T.

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J. J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[Crossref] [PubMed]

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

Balembois, F.

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

Bramati, A.

Brussard, M.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

Buchler, B. C.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Burks, S.

Caballero, J. M.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Calonico, D.

Camargo, F. A.

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

Canalias, C.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Carri, J.

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Catani, J.

Cha, Y. H.

Chen, S.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Chen, Y. A.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Chevy, F.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Chiummo, A.

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Costanzo, G. A.

Cruz, F. C.

Cruz, L. S.

Danielmeyer, H. G.

H. G. Danielmeyer and W. N. Leibolt, “Stable tunable single-frequency Nd:YAG laser,” Appl. Phys. (Berl.) 3(3), 193–198 (1974).
[Crossref]

Dawson, M. D.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

Dunn, M. H.

C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency uv radiation,” J. Phys. D Appl. Phys. 12(3), 355–368 (1979).
[Crossref]

Eichfelder, M.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Eismann, U.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Erbert, G.

Figueroa, E.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Friel, G. J.

Furusawa, A.

Genda, T.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

Georges, P.

Gerbier, F.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Giacobino, E.

Glock, O.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Hald, J.

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Han, J. M.

Harb, C. C.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Hastie, J. E.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

Hetet, G.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Himbert, M. E.

Holmes, W.

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

Imamoglu, A.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100(9), 093603 (2008).
[Crossref] [PubMed]

Jensen, O. B.

Jeong, D. Y.

Jetter, M.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Jia, X.

Juncar, P.

Juwiler, I.

Kahle, H.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Kemp, A. J.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

G. J. Friel, A. J. Kemp, T. K. Lake, and B. D. Sinclair, “Compact and efficient Nd:YVO 4 laser that generates a tunable single-frequency green output,” Appl. Opt. 39(24), 4333–4337 (2000).
[Crossref] [PubMed]

Kim, T. S.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Knize, R. J.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

B. V. Zhdanov, Y. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, “Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal,” Opt. Express 16(22), 17585–17590 (2008).
[Crossref] [PubMed]

Ko, K. H.

Korystov, D.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Kozuma, M.

Krysa, A. B.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

Kvashnin, N. L.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

Lake, T. K.

Lam, P. K.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Laporta, P.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

Latrasse, C.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

Laurat, J.

Leibolt, W. N.

H. G. Danielmeyer and W. N. Leibolt, “Stable tunable single-frequency Nd:YAG laser,” Appl. Phys. (Berl.) 3(3), 193–198 (1974).
[Crossref]

Lemonde, P.

R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Levi, F.

Lim, G.

Lobino, M.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Lorini, L.

Louyer, Y.

Lu, Y.

Lu, Y. L.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

Lundeman, J. H.

Lvovsky, A. I.

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Michler, P.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Miller, W.

Mitchell, M. W.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Morton, L. G.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

Moulton, P. F.

Naumann, B.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

Nevsky, A. Y.

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

Ortalo, J.

Pan, J. W.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Park, H. M.

Pastor, P. C.

Peik, E.

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Petersen, P. M.

Pilypas, K. A.

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

Pinotsi, D.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100(9), 093603 (2008).
[Crossref] [PubMed]

Pizzocaro, M.

Plimmer, M. D.

Polzik, E. S.

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

Poulin, M.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

Predojevic, A.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Roberts, J. S.

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

Roßbach, R.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Salomon, C.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Sarrouf, R.

Schmiedmayer, J.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Schori, C.

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Schwarzbäck, T.

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

Schwedes, C.

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

B. V. Zhdanov, Y. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, “Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal,” Opt. Express 16(22), 17585–17590 (2008).
[Crossref] [PubMed]

Sinclair, B. D.

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

Sorensen, J. L.

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

Sousa, V.

Sumpf, B.

Tanimura, T.

Targat, R. L.

R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Tetu, M.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

Touahri, D.

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

Trenec, G.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Vigue, J.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Villa, F.

Von Zanthier, J.

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

Wagstaff, C. E.

C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency uv radiation,” J. Phys. D Appl. Phys. 12(3), 355–368 (1979).
[Crossref]

Walther, H.

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

Wetter, N. U.

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

Willette, T. Z.

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

Wright, D.

Xu, G.

Yokoi, Y.

Yuan, Z. S.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Zhai, Z.

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Zhao, B.

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Zhdanov, B. V.

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

B. V. Zhdanov, Y. Lu, M. K. Shaffer, W. Miller, D. Wright, and R. J. Knize, “Frequency-doubling of a high power cesium vapor laser using a PPKTP crystal,” Opt. Express 16(22), 17585–17590 (2008).
[Crossref] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

Zondy, J. J.

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J. J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[Crossref] [PubMed]

R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

Zukauskas, A.

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Appl. Opt. (5)

Appl. Phys. (Berl.) (1)

H. G. Danielmeyer and W. N. Leibolt, “Stable tunable single-frequency Nd:YAG laser,” Appl. Phys. (Berl.) 3(3), 193–198 (1974).
[Crossref]

Appl. Phys. B (2)

C. Schwedes, E. Peik, J. Von Zanthier, A. Y. Nevsky, and H. Walther, “Narrow-bandwidth diode-laser-based blue and ultraviolet light source,” Appl. Phys. B 76(2), 143–147 (2003).
[Crossref]

U. Eismann, F. Gerbier, C. Canalias, A. Zukauskas, G. Trenec, J. Vigue, F. Chevy, and C. Salomon, “An all-solid-state laser source at 671 nm for cold atom experiments with lithium,” Appl. Phys. B 106(2), 25–36 (2012).
[Crossref]

Appl. Phys. Lett. (2)

T. Schwarzbäck, H. Kahle, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Wavelength tunable ultraviolet laser emission via intra-cavity frequency doubling of an AlGaInP vertical external-cavity surface-emitting laser down to 328 nm,” Appl. Phys. Lett. 99(26), 261101 (2011).
[Crossref]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, “Tunable ultraviolet output from an intracavity frequency-doubled red vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 89(6), 061114 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

F. A. Camargo, T. Z. Willette, T. Badr, N. U. Wetter, and J. J. Zondy, “Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm,” IEEE J. Quantum Electron. 46(5), 804–809 (2010).
[Crossref]

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

G. Hetet, O. Glock, K. A. Pilypas, C. C. Harb, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the Rubidium D1 line,” J. Phys. At. Mol. Opt. Phys. 40(1), 221–226 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. E. Wagstaff and M. H. Dunn, “A second-harmonic, ring dye laser for the generation of continuous-wave, single-frequency uv radiation,” J. Phys. D Appl. Phys. 12(3), 355–368 (1979).
[Crossref]

Nature (2)

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Z. S. Yuan, Y. A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J. W. Pan, “Experimental demonstration of a BDCZ quantum repeater node,” Nature 454(7208), 1098–1101 (2008).
[Crossref] [PubMed]

Opt. Commun. (4)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, “Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard applications,” Opt. Commun. 203(3-6), 359–362 (2002).
[Crossref]

B. V. Zhdanov, M. K. Shaffer, W. Holmes, and R. J. Knize, “Blue laser light generation by intracavity frequency doubling of cesium vapor laser,” Opt. Commun. 282(23), 4585–4586 (2009).
[Crossref]

R. L. Targat, J. J. Zondy, and P. Lemonde, “75%-efficiency blue generation from an intracavity PPKTP frequency doubler,” Opt. Commun. 247(4-6), 471–481 (2005).
[Crossref]

M. Poulin, C. Latrasse, D. Touahri, and M. Tetu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207(1-6), 233–242 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

A. Predojević, Z. Zhai, J. M. Caballero, and M. W. Mitchell, “Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator,” Phys. Rev. A 78(6), 063820 (2008).
[Crossref]

Phys. Rev. Lett. (6)

J. Hald, J. L. Sorensen, C. Schori, and E. S. Polzik, “Spin squeezed atoms: A macroscopic entangled ensemble created by light,” Phys. Rev. Lett. 83(7), 1319–1322 (1999).
[Crossref]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961).
[Crossref]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997).
[Crossref]

E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68(20), 3020–3023 (1992).
[Crossref] [PubMed]

J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100(9), 093602 (2008).
[Crossref] [PubMed]

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100(9), 093603 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

B. V. Zhdanov, M. K. Shaffer, Y. L. Lu, B. Naumann, T. Genda, and R. J. Knize, “Perfomance comparison of nonlinear crystals for frequency doubling of an 894 nm cesium vapor laser,” Proc. SPIE 7846, 78460B (2010).
[Crossref]

Other (3)

TOPTICA Photonics AG, “SHG pro,” http://www.toptica.com/products/research_grade_diode_lasers/frequency_converted_diode_lasers/shg_pro_stand_alone_second_harmonic_generator_module.html .

U. Eismann, M. Enderlein, K. Simeonidis, F. Keller, F. Rohde, D. Opalevs, M. Scholz, W. Kaenders, and J. Stuhler, “Active and passive stabilization of a high-power violet frequency-doubled diode laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper JTu5A.65.
[Crossref]

R. W. Fox, C. W. Oates, and L. W. Hollberg, Stabilizing Diode Lasers to High-Finesse Cavities (Elsevier Science, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup. ECDL: external-cavity diode laser; OI: opitcal isolator; EOM: elecro-optic modulator; TA: tapered amplifier; APP: Anamorphic Prism Pairs; HWP: half-wave plate; MML: mode-matching lens; DBS: dichroic beam splitter; FG: function generator; LPF: low pass filter; PID: proportional-integral-derivative controller; PM: power meter.
Fig. 2
Fig. 2 Blue laser power (black squares) and calculated cavity waist size (blue curve) versus different cavity length with the mode-matched incident pump power of 350 mW.
Fig. 3
Fig. 3 Beam quality M2 values of blue laser beam for both axes at maximum incident infrared laser power. The red dots are results for the x axis, and the blue squares for the y axis. The inset is the beam profile of the blue laser.
Fig. 4
Fig. 4 (a) Saturation absorption spectroscopy (SAS) of F=4 F =3 transition of 133Cs D1 line (black curve) and blue laser power (green curve) when the infrared diode laser is scanned. (b) The transmission signal of confocal F-P cavity, it is also shown in red curve in (a).
Fig. 5
Fig. 5 Power stability of blue laser at different incident power levels over 2 hours.
Fig. 6
Fig. 6 The measured intensity noise of 1 mW blue laser. The resolution bandwidth and the video bandwidth of the spectrum analyzer are 30 kHz and 1 kHz, respectively.

Metrics