Abstract

High stability single- and dual-wavelength compound cavity erbium-doped fiber lasers (EDFLs) with ultra-narrow linewidth, high optical signal to noise ratio (OSNR) and widely tunable range are demonstrated. Different from using traditional cascaded Type-1/Type-2 fiber rings as secondary cavities, we nest a Type-1 ring inside a Type-2 ring to form a passive subring cavity to achieve single-longitudinal-mode (SLM) lasing with ultra-narrow linewidth for the first time. We also show that the SLM lasing stability can be further improved by inserting a length of polarization maintaining fiber in the Type-2 ring. Using a uniform fiber Bragg grating (FBG) and two superimposed FBGs as mode restricting elements, respectively, we obtain a single-wavelength EDFL with a linewidth as narrow as 715 Hz and an OSNR as high as 73 dB, and a dual-wavelength EDFL with linewidths less than 1 kHz and OSNRs higher than 68 dB for both lasing wavelengths. Finally, by employing a novel self-designed strain adjustment device capable of applying both the compression and tension forces to the FBGs for wavelength tuning, we achieve the tuning range larger than 10 nm for both of the EDFLs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter

Bin Yin, Suchun Feng, Zhibo Liu, Yunlong Bai, and Shuisheng Jian
Opt. Express 22(19) 22528-22533 (2014)

Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering

Tao Zhu, Baomei Zhang, Leilei Shi, Shihong Huang, Ming Deng, Jianguo Liu, and Xiong Li
Opt. Express 24(2) 1324-1330 (2016)

Analysis of narrow linewidth fiber laser using double subring resonators

Nastaran Pourshab, Asghar Gholami, Mohammad Javad Hekmat, and Narges Shahriyari
J. Opt. Soc. Am. B 34(11) 2414-2420 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [Crossref] [PubMed]
  2. B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
    [Crossref]
  3. J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  4. H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
    [Crossref] [PubMed]
  5. Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
    [Crossref] [PubMed]
  6. K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
    [Crossref] [PubMed]
  7. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [Crossref] [PubMed]
  8. S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
    [Crossref]
  9. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
    [Crossref] [PubMed]
  10. X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
    [Crossref]
  11. X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 842–849 (2011).
  12. T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
    [Crossref]
  13. J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
    [Crossref]
  14. S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
    [Crossref]
  15. Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
    [Crossref]
  16. T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
    [Crossref] [PubMed]
  17. T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
    [Crossref]
  18. S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
    [Crossref]
  19. S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
    [Crossref]
  20. J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
    [Crossref]
  21. S. Orazio, Principles of Lasers (Plenum Publishing Corporation, 1998).
  22. Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
    [Crossref] [PubMed]
  23. X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

2014 (3)

2013 (6)

X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref] [PubMed]

Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref] [PubMed]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

2009 (1)

2005 (2)

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

1999 (1)

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

1998 (1)

1996 (1)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Abedin, K. S.

Al-Taiy, H.

Bai, Y.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Bellemare, A.

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

Chang, F.

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Chang, J.

Chen, D.

Chen, X.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Chen, Y. K.

Clements, W. R. L.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Deng, M.

Deng, Z.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Fang, X.

Feng, S.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Feng, T.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Feng, Z.

Gao, L.

Gao, S.

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

Geng, J. H.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Guo, Y.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

He, X.

Huang, S.

Huang, X.

Huo, J.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Jia, C.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Jian, S.

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

Jiang, S. B.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Klinger, J.

Kremp, T.

Latrasse, C.

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

Lee, C. C.

Lemieux, J. F.

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

Li, C.

Li, Q.

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Li, W.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Li, X.

Liao, C.

Liao, C. R.

Liaw, S. K.

Lit, J. W. Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Liu, B.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Liu, J.

Liu, P.

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Liu, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Liu, T.

Liu, X.

Lu, S.

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Luo, J.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Lv, G.

Ma, Y.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Mao, Q.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Mo, S.

Ni, J.

Nicholson, J. W.

Peng, G.

Peng, W.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Porque, J.

Preußler, S.

Qi, C.

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

Qi, H.

Ren, W.

Schinn, G. W.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Schneider, T.

Shi, L.

Song, Z.

Spiegelberg, C.

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Sun, J.

Sun, T.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Sun, Z.

Tan, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Tetu, M.

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

Tian, Y.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Wang, C.

Wang, D. N.

Wang, P.

Wang, Q.

Wang, T.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Wei, L.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Wenzel, N.

Westbrook, P. S.

Xu, S.

Yan, F.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref] [PubMed]

Yang, C.

Yang, Q.

Yang, Z.

Yao, J.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Yue, C.-Y.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Zeng, F.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Zhang, B.

Zhang, H.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Zhang, J.

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

Zhang, L.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Zhang, W.

Zhao, Y.

Zhu, T.

Electron. Lett. (1)

J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (3)

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 842–849 (2011).

Laser Phys. (1)

S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]

Laser Phys. Lett. (1)

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (3)

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (2)

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]

Opt. Lett. (4)

Other (1)

S. Orazio, Principles of Lasers (Plenum Publishing Corporation, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental configuration of the proposed EDFL with Inset-1: transmission spectra of UFBG (up) and SI-FBGs (down) and Inset-2: schematic diagram of the designed SAD for T-NBR (UFBG or SI-FBGs). AMRC: active main ring cavity; PSC: passive subring cavity; SAD: strain adjustment device; T-NBR: tunable narrowband reflector; UFBG: uniform FBG; SI-FBGs: superimposed FBGs.
Fig. 2
Fig. 2 Schematic of SLM operation in the EDFL. (a) Dense longitudinal modes of AMRC; (b) FSR and 3-dB pass-band bandwidth of Type-2 ring; (c) FSR of Type-1 ring; (d) Spectrum of the center-reflecting wavelength of UFBG or SI-FBGs and the selected SLM
Fig. 3
Fig. 3 (a) Spectrum of single-wavelength operation; Inset is 16 times repeated OSA scans at 2 min intervals. (b) OSNR changes along with the pump power. (c) Wavelength and output power fluctuations in 6 h.
Fig. 4
Fig. 4 Measured self-homodyne RF spectra in 0~400MHz span: (a) keeping the PMF in the PSC; (b) the PMF replaced by an identical long length SMF; (c) The PSC removed. RF beating spectra measured by using the DSHMS: (d) in 0~250 MHz frequency range with 10 kHz resolution bandwidth; (e) in 199.8~200.2 MHz frequency range with 100 Hz resolution bandwidth.
Fig. 5
Fig. 5 Tunability of single-wavelength operating using the proposed novel tuning mechanism.
Fig. 6
Fig. 6 Dual-wavelength operation of the proposed EDFL based on SI-FBGs. (a) Typical optical spectrum; Inset is 10 times repeated OSA scans at 30 min intervals. RF beating spectrum measured by DSHMS; (b-1) in 0~250 MHz with 10 kHz resolution bandwidth; (b-2) in 199.8~200.2 MHz with 100 Hz resolution bandwidth; (c) Tunability using the proposed novel tuning mechanism.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F S R = c n L ,
Δ ν = c δ 2 n L ,
δ = 1 2 ln ( I 0 I 1 ) ,

Metrics