Abstract

An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High brightness laser-diode device emitting 160 watts from a 100  μm/NA  0.22 fiber

Junhong Yu, Linui Guo, Hualing Wu, Zhao Wang, Hao Tan, Songxin Gao, Deyong Wu, and Kai Zhang
Appl. Opt. 54(32) 9385-9389 (2015)

Beam shaping design for compact and high-brightness fiber-coupled laser-diode system

Junhong Yu, Linui Guo, Hualing Wu, Zhao Wang, Hao Tan, Songxin Gao, Deyong Wu, and Kai Zhang
Appl. Opt. 54(18) 5759-5763 (2015)

Narrow linewidth operation of a spectral beam combined diode laser bar

Zhanda Zhu, Menghua Jiang, Siqi Cheng, Yongling Hui, Hong Lei, and Qiang Li
Appl. Opt. 55(12) 3294-3296 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H.-G. Treusch and R. Pandey, “High-power diode laser arrays,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, ed. (Academic, 2011), pp. 133–159.
  2. U. Brauch, P. Loosen, and H. Opower, “High-power diode lasers for direct applications,” in High-Power Diode Lasers: Fundamentals, Technology, Applications, R. Diehl, ed. (Academic, 2000), pp. 303–368.
  3. K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).
  4. S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
    [Crossref]
  5. D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
    [Crossref]
  6. D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
    [Crossref]
  7. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, “Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot,” Opt. Lett. 20(8), 898–900 (1995).
    [Crossref] [PubMed]
  8. S. H. Ghasemi, M. R. Hantehzadeh, J. Sabbaghzadeh, D. Dorranian, M. Lafooti, V. Vatani, R. Rezaei-Nasirabad, A. Hemmati, A. A. Amidian, and S. A. Alavian, “Beam shaping design for coupling high power diode laser stack to fiber,” Appl. Opt. 50(18), 2927–2930 (2011).
    [Crossref] [PubMed]
  9. J. Yu, L. Guo, H. Wu, Z. Wang, H. Tan, S. Gao, D. Wu, and K. Zhang, “High brightness beam shaping and fiber coupling of laser-diode bars,” Appl. Opt. 54(11), 3513–3516 (2015).
    [Crossref] [PubMed]
  10. S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” United States patent 5513201 (April 30, 1996).
  11. W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett. 21(6), 375–377 (1996).
    [Crossref] [PubMed]
  12. R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
    [Crossref]
  13. N. Coluccelli, “Nonsequential modeling of laser diode stacks using Zemax: simulation, optimization, and experimental validation,” Appl. Opt. 49(22), 4237–4245 (2010).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

2012 (2)

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

2011 (1)

2010 (3)

N. Coluccelli, “Nonsequential modeling of laser diode stacks using Zemax: simulation, optimization, and experimental validation,” Appl. Opt. 49(22), 4237–4245 (2010).
[Crossref] [PubMed]

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

1996 (1)

1995 (1)

Alavian, S. A.

Amidian, A. A.

Bonati, G.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Burgess, J.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Chann, B.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Chiba, K.

Clarkson, W. A.

Coluccelli, N.

Dörfel, F.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Dorranian, D.

Duennwald, D.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Franke, A.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Fritsche, H.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

Gabler, T.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Gao, S.

Ghasemi, S. H.

Glenn, J. D.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Gries, W.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

Guo, L.

Hanna, D. C.

Hantehzadeh, M. R.

Heinemann, S.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

Hemmati, A.

Huang, R. K.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Kaiman, M.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Karlsen, S.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

Kleine, K.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Kobayashi, T.

Koesters, A.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Krause, V.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Kruschke, B.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

Lafooti, M.

Leisher, P.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

Liem, A.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Martinsen, R.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

Matthews, D. G.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Overman, R.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Pflueger, S.

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Price, K.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

Rezaei-Nasirabad, R.

Sabbaghzadeh, J.

Saito, Y.

Schmidt, T.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

Schröder, D.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Tan, H.

Tayebati, P.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

Vatani, V.

Wagner, L.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Wang, Z.

Werner, E.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Wu, D.

Wu, H.

Yamaguchi, S.

Yu, J.

Zhang, K.

Ziemer, H.

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

Appl. Opt. (3)

Opt. Lett. (2)

Proc. SPIE (5)

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
[Crossref]

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High brightness fiber coupled pump laser development,” Proc. SPIE 7583, 842102 (2010).

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
[Crossref]

D. Schröder, E. Werner, A. Franke, L. Wagner, G. Bonati, F. Dörfel, H. Ziemer, A. Liem, and T. Gabler, “Roadmap to low cost high brightness diode laser power out of the fiber,” Proc. SPIE 7583, 758309 (2010).
[Crossref]

D. G. Matthews, K. Kleine, V. Krause, A. Koesters, D. Duennwald, and S. Pflueger, “A 15 kW fiber-coupled diode laser for pumping applications,” Proc. SPIE 8241, 824103 (2012).
[Crossref]

Other (3)

S. Yamaguchi, M. Daimon, K. Chiba, T. Kobayashi, and Y. Saito, “Optical path rotating device used with linear array laser diode and laser appartus applied therewith,” United States patent 5513201 (April 30, 1996).

H.-G. Treusch and R. Pandey, “High-power diode laser arrays,” in High-Power Laser Handbook, H. Injeyan and G. D. Goodno, ed. (Academic, 2011), pp. 133–159.

U. Brauch, P. Loosen, and H. Opower, “High-power diode lasers for direct applications,” in High-Power Diode Lasers: Fundamentals, Technology, Applications, R. Diehl, ed. (Academic, 2000), pp. 303–368.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The commercial beam transformation system (BTS): (a) Beam shaping principle of the cylindrical lens tilted at −45° and the beam profiles at different positions. (b) The simulated beam profile which is obtained at a distance of 5 mm from the fast-axis collimation lens (FAC lens). (c) The simulated beam profile which is obtained at a distance of 5 mm from the cylindrical lens array.
Fig. 2
Fig. 2 Beam profiles after passing through BTS365: (a) The simulated beam profile which is obtained at a distance of 5 mm from BTS365. (b) The experimental beam profile which is captured at a distance of 5 mm from BTS365.
Fig. 3
Fig. 3 Simulation analysis of the tilted angle of the laser-diode beam after BTS365: (a) Propagation of the laser-diode beam in the biconvex cylindrical lens. (b) The tilted angle of the laser-diode beam as a function of the slow-axis divergence angle. (c) The tilted angle of the laser-diode beam as a function of the radius of curvature.
Fig. 4
Fig. 4 Comparison of the residual divergence angle and schematic of the experimental setups for beam quality measurement: (a) The residual divergence angle along the fast-axis after BTS365 and FAC365 (two curves: the simulation results, two far-field beam profiles: the experimental results captured by CCD @ EFL = 300 mm). (b) The experimental setup for the residual divergence measurement. (c) The experimental setup for the beam size measurement.
Fig. 5
Fig. 5 Schematic of the optimized BTS: (a) The optimized cylindrical lens array. (b) The laser-diode beam propagates in the plane perpendicular to the junction. (c) The laser-diode beam propagates in the plane parallel to the junction.
Fig. 6
Fig. 6 Beam quality in different positions: (a) The near-field beam profiles (enclosed 90% energy). (b) The far-field beam profiles @ EFL = 300 mm (enclosed 90% energy). (c) BPPX and BPPY.
Fig. 7
Fig. 7 Fiber-coupled experimental results: (a) The focal spot of the laser-diode beam (enclosed 95% energy). (b) The numerical aperture of the focal spot (enclosed 95% energy). (c) The output power and fiber-coupled efficiency.

Tables (4)

Tables Icon

Table 1 Typical values of the mini-bar

Tables Icon

Table 2 Key parameters of BTS365 (Material: S-TIH53, best performed at 976 ± 4 nm).

Tables Icon

Table 3 Improvement methods for ray aberration.

Tables Icon

Table 4 Improvement methods for beam tilting.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T max =2× r 1 , T 2 > d Y & T 2 > d X , Pitch> T 2 ,
max(BP P Y ,BP P X )= BP P fiber 2 = d fiber ×NA 2 2 =5.32mm×mrad,

Metrics