Abstract

In this work, we established a fluorescence resonance energy transfer (FRET) system between ZnSe:Mn/ZnS quantum dots and Hypocrellin A (HA, a photosensitizer used for photodynamic therapy of cancer) in aqueous solution, excited by four-photon. Here, the QDs are the donors and the HA are the acceptors. The four-photon-excited fluorescence resonance energy transfer spectrum was obtained under 1300nm femtosecond laser pluses. The experimental results indicated that the highest efficiency of FRET can reach up to 61.3%. Furthermore, the viability test in cancer cells was further demonstrated for biological applications of FRET system. When FRET occurs the cell killing rate of the cancer cells will reach to 84.8% with the 1mM concentration of HA. Our work demonstrates that while the four-photon excited FRET system is promising in both optics and biological applications, is also needs further investigation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shaping based two-photon FRET stoichiometry

Daniel C. Flynn, Amar R. Bhagwat, Meredith H. Brenner, Marcos F. Núñez, Briana E. Mork, Dawen Cai, Joel A. Swanson, and Jennifer P. Ogilvie
Opt. Express 23(3) 3353-3372 (2015)

Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging

James McGinty, Vadim Y. Soloviev, Khadija B. Tahir, Romain Laine, Daniel W. Stuckey, Joseph V. Hajnal, Alessandro Sardini, Paul M. W. French, and Simon R. Arridge
Opt. Lett. 34(18) 2772-2774 (2009)

Quantitative FRET measurement by high-speed fluorescence excitation and emission spectrometer

Jing Yuan, Leilei Peng, Brett E. Bouma, and Guillermo J. Tearney
Opt. Express 18(18) 18839-18851 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22(4), 4789–4798 (2014).
    [Crossref] [PubMed]
  2. I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
    [Crossref] [PubMed]
  3. C. Berney and G. Danuser, “FRET or No FRET: A Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003).
    [Crossref] [PubMed]
  4. E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
    [Crossref] [PubMed]
  5. H. Liu, C. T. Xu, and S. Andersson-Engels, “Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging,” Opt. Express 22(15), 17782–17790 (2014).
    [Crossref] [PubMed]
  6. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  7. D. C. Flynn, A. R. Bhagwat, M. H. Brenner, M. F. Núñez, B. E. Mork, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Pulse-shaping based two-photon FRET stoichiometry,” Opt. Express 23(3), 3353–3372 (2015).
    [Crossref] [PubMed]
  8. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  9. J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
    [Crossref] [PubMed]
  10. J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
    [Crossref] [PubMed]
  11. C. Higgins, M. Lunz, A. L. Bradley, V. A. Gerard, S. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Energy transfer in colloidal CdTe quantum dot nanoclusters,” Opt. Express 18(24), 24486–24494 (2010).
    [Crossref] [PubMed]
  12. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
    [Crossref] [PubMed]
  13. G. Xing, W. Ji, Y. Zheng, and J. Y. Ying, “High efficiency and nearly cubic power dependence of below-band-edge photoluminescence in water-soluble, copperdoped ZnSe/ZnS Quantum dots,” Opt. Express 16, 5715–5720 (2008).
    [Crossref]
  14. J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
    [Crossref]
  15. G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
    [Crossref] [PubMed]
  16. A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
    [Crossref]
  17. J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
    [Crossref]
  18. T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
    [Crossref] [PubMed]
  19. W. Z. Wu, Z. R. Zheng, W. L. Liu, J. P. Zhang, Y. X. Yan, Q. H. Jin, Y. Q. Yang, and W. H. Su, “Upconversion luminescence of CdTe nanocrystals by use of near-infrared femtosecond laser excitation,” Opt. Lett. 32(9), 1174–1176 (2007).
    [Crossref] [PubMed]
  20. L. Zhao, K. Abe, S. Rajoria, Q. Pian, M. Barroso, and X. Intes, “Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging,” Biomed. Opt. Express 5(3), 944–960 (2014).
    [Crossref] [PubMed]
  21. L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23(5), 6145–6150 (2015).
    [Crossref] [PubMed]
  22. Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
    [Crossref]
  23. J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
    [Crossref] [PubMed]
  24. J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
    [Crossref] [PubMed]
  25. L. Stryer and R. P. Haugland, “Energy Transfer: A Spectroscopic Ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
    [Crossref] [PubMed]
  26. M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
    [Crossref]
  27. T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
    [Crossref]
  28. G.S. He, In Physics of Nonlinear Optics (World Scientific, 2011).
  29. A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
    [Crossref]
  30. G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
    [Crossref] [PubMed]

2015 (2)

2014 (7)

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22(4), 4789–4798 (2014).
[Crossref] [PubMed]

L. Zhao, K. Abe, S. Rajoria, Q. Pian, M. Barroso, and X. Intes, “Spatial light modulator based active wide-field illumination for ex vivo and in vivo quantitative NIR FRET imaging,” Biomed. Opt. Express 5(3), 944–960 (2014).
[Crossref] [PubMed]

H. Liu, C. T. Xu, and S. Andersson-Engels, “Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging,” Opt. Express 22(15), 17782–17790 (2014).
[Crossref] [PubMed]

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

2012 (1)

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

2010 (2)

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

C. Higgins, M. Lunz, A. L. Bradley, V. A. Gerard, S. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Energy transfer in colloidal CdTe quantum dot nanoclusters,” Opt. Express 18(24), 24486–24494 (2010).
[Crossref] [PubMed]

2009 (1)

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

2008 (2)

G. Xing, W. Ji, Y. Zheng, and J. Y. Ying, “High efficiency and nearly cubic power dependence of below-band-edge photoluminescence in water-soluble, copperdoped ZnSe/ZnS Quantum dots,” Opt. Express 16, 5715–5720 (2008).
[Crossref]

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (1)

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

2005 (1)

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

2004 (1)

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

2003 (3)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

C. Berney and G. Danuser, “FRET or No FRET: A Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003).
[Crossref] [PubMed]

2002 (1)

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

2001 (1)

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

1996 (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

1993 (1)

Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
[Crossref]

1967 (1)

L. Stryer and R. P. Haugland, “Energy Transfer: A Spectroscopic Ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Abe, K.

Adjobo-Hermans, M. J.

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

An, J.-Y.

Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
[Crossref]

Andersson-Engels, S.

Baev, A.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

Barroso, M.

Beek, T. V. D.

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Berney, C.

C. Berney and G. Danuser, “FRET or No FRET: A Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003).
[Crossref] [PubMed]

Bhagwat, A. R.

Bradley, A. L.

Brenner, M. H.

Bullen, C.

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

Byrne, S.

Cai, D.

Cai, F.

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Chen, J. Y.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Chen, R.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Chon, J. W. M.

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

Clapp, A. R.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Cui, M.

Danuser, G.

C. Berney and G. Danuser, “FRET or No FRET: A Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003).
[Crossref] [PubMed]

Dong, Y. Q.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Ehrenberg, B.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Erogbogbo, F.

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

Feng, Y.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Filip, R.

Fisher, B.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Flynn, D. C.

Gadella, T. W.

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

Gao, Y.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Gaponik, N.

Gerard, V. A.

Goldman, E. R.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Grimsdale, A. C.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Gu, M.

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

Gu, X.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Gu, Y. H.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Gun’ko, Y. K.

Han, J.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

Haugland, R. P.

L. Stryer and R. P. Haugland, “Energy Transfer: A Spectroscopic Ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

He, G. S.

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

He, S.

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

He, T.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

He, Z.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Higgins, C.

Hu, Y.-Z.

Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
[Crossref]

Huber, T.

Intes, X.

Jayakumar, H.

Ježek, M.

Ji, W.

Jiang, L. J.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Jiang, L.-J.

Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
[Crossref]

Jin, Q. H.

Kachynski, A. V.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Kauten, T.

Kelly, J. J.

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Kiran, P. P.

A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
[Crossref]

Kong, L.

Kremers, G. J.

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

Kumar, G. R.

A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
[Crossref]

Kuzmin, A. N.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Lad, A. D.

A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
[Crossref]

Lesnyak, V.

Li, F.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

Li, M.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

Liang, Y.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Lim, Z. B.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Liu, H.

Liu, J.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Liu, W. L.

Liu, Z.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Lu, P.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

Lunz, M.

Ma, L.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Mahamuni, S.

A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
[Crossref]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Mauro, J. M.

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Medintz, I. L.

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Meijerink, A.

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Mork, B. E.

Mulvaney, P.

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

Núñez, M. F.

Ogilvie, J. P.

Ohulchanskyy, T. Y.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Peng, X.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Pian, Q.

Pliss, A.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Prasad, P. N.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

Predojevic, A.

Qian, J.

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Qiu, T.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Qu, J.

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Rajoria, S.

Rajwar, D.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Ryasnyanskiy, A. I.

Sahoo, Y.

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Shen, J.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Solomon, G. S.

Song, K.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Stryer, L.

L. Stryer and R. P. Haugland, “Energy Transfer: A Spectroscopic Ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Su, W. H.

Sun, H.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Suyver, J. F.

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Swanson, J. A.

Swihart, M. T.

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

Van Munster, E. B.

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

Wang, D.

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Wang, J.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Wang, Y.

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Wei, S.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Weihs, G.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Wu, P.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Wu, S.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Wu, W. Z.

Wu, X.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Wuister, S. F.

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

Xia, A. D.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Xing, G.

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Xu, C. T.

Yan, Y. X.

Yang, Y. Q.

Ying, J. Y.

Yong, K. T.

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

Yong, K.-T.

Zha, S.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Zhan, Q.

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

Zhang, J.

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

Zhang, J. P.

Zhang, Z.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Zhao, D.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Zhao, J. Q.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Zhao, L.

Zhao, Y. W.

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Zheng, Q.

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

Zheng, Y.

Zheng, Z. R.

Zhou, G.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Zhou, L.

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Zhu, Y.

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

T. He, R. Chen, Z. B. Lim, D. Rajwar, L. Ma, Y. Wang, Y. Gao, A. C. Grimsdale, and H. Sun, “Efficient Energy Transfer under Two-Photon Excitation in a 3D, Supramolecular, Zn(II)-Coordinated, Self-Assembled Organic Network,” Adv. Opt. Mater. 1(1), 40–47 (2014).
[Crossref]

Analyst (Lond.) (1)

T. Qiu, D. Zhao, G. Zhou, Y. Liang, Z. He, Z. Liu, X. Peng, and L. Zhou, “A positively charged QDs-based FRET probe for micrococcal nuclease detection,” Analyst (Lond.) 135(9), 2394–2399 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

A. D. Lad, P. P. Kiran, G. R. Kumar, and S. Mahamuni, “Three-photon absorption in ZnSe and ZnSe/ZnS quantum dots,” Appl. Phys. Lett. 90(13), 133113 (2007).
[Crossref]

J. F. Suyver, T. V. D. Beek, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Luminescence of nanocrystalline ZnSe:Cu,” Appl. Phys. Lett. 79(25), 4222–4224 (2001).
[Crossref]

J. W. M. Chon, M. Gu, C. Bullen, and P. Mulvaney, “Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals,” Appl. Phys. Lett. 84(22), 4472–4474 (2004).
[Crossref]

Biomaterials (2)

J. Qian, D. Wang, F. Cai, Q. Zhan, Y. Wang, and S. He, “Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging,” Biomaterials 33(19), 4851–4860 (2012).
[Crossref] [PubMed]

J. Wang, Z. Zhang, S. Zha, Y. Zhu, P. Wu, B. Ehrenberg, and J. Y. Chen, “Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density,” Biomaterials 35(34), 9372–9381 (2014).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

C. Berney and G. Danuser, “FRET or No FRET: A Quantitative Comparison,” Biophys. J. 84(6), 3992–4010 (2003).
[Crossref] [PubMed]

ChemPhysChem (1)

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” ChemPhysChem 7(1), 47–57 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Li, F. Li, Z. He, J. Zhang, J. Han, and P. Lu, “Two-photon-excited fluorescence resonance energy transfer in an aqueous system of CdTe quantum dots and Rhodamine B,” J. Appl. Phys. 116(23), 233106 (2014).
[Crossref]

J. Microsc. (1)

E. B. Van Munster, G. J. Kremers, M. J. Adjobo-Hermans, and T. W. Gadella., “Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching,” J. Microsc. 218(Pt 3), 253–262 (2005).
[Crossref] [PubMed]

J. Photochem. Photobiol. B (2)

Y.-Z. Hu, J.-Y. An, and L.-J. Jiang, “Studies of the sulfonation of hypocrellin A and the photodynamic actions of the product,” J. Photochem. Photobiol. B 17(2), 195–201 (1993).
[Crossref]

J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, and Y. H. Gu, “Two-photon excitation studies of hypocrellins for photodynamic therapy,” J. Photochem. Photobiol. B 68(2-3), 156–164 (2002).
[Crossref] [PubMed]

Nano Lett. (1)

G. S. He, Q. Zheng, K. T. Yong, F. Erogbogbo, M. T. Swihart, and P. N. Prasad, “Two- and three-photon absorption and frequency upconverted emission of silicon quantum dots,” Nano Lett. 8(9), 2688–2692 (2008).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Mater. (1)

I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, “Self-assembled nanoscale biosensors based on quantum dot FRET donors,” Nat. Mater. 2(9), 630–638 (2003).
[Crossref] [PubMed]

Nat. Photonics (1)

A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, “Photodynamic therapy by in situ nonlinear photon conversion,” Nat. Photonics 8(6), 455–461 (2014).
[Crossref]

Opt. Express (7)

H. Liu, C. T. Xu, and S. Andersson-Engels, “Potential of multi-photon upconversion emissions for fluorescence diffuse optical imaging,” Opt. Express 22(15), 17782–17790 (2014).
[Crossref] [PubMed]

D. C. Flynn, A. R. Bhagwat, M. H. Brenner, M. F. Núñez, B. E. Mork, D. Cai, J. A. Swanson, and J. P. Ogilvie, “Pulse-shaping based two-photon FRET stoichiometry,” Opt. Express 23(3), 3353–3372 (2015).
[Crossref] [PubMed]

L. Kong and M. Cui, “In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive compensation technique,” Opt. Express 23(5), 6145–6150 (2015).
[Crossref] [PubMed]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

G. Xing, W. Ji, Y. Zheng, and J. Y. Ying, “High efficiency and nearly cubic power dependence of below-band-edge photoluminescence in water-soluble, copperdoped ZnSe/ZnS Quantum dots,” Opt. Express 16, 5715–5720 (2008).
[Crossref]

C. Higgins, M. Lunz, A. L. Bradley, V. A. Gerard, S. Byrne, Y. K. Gun’ko, V. Lesnyak, and N. Gaponik, “Energy transfer in colloidal CdTe quantum dot nanoclusters,” Opt. Express 18(24), 24486–24494 (2010).
[Crossref] [PubMed]

A. Predojević, M. Ježek, T. Huber, H. Jayakumar, T. Kauten, G. S. Solomon, R. Filip, and G. Weihs, “Efficiency vs. multi-photon contribution test for quantum dots,” Opt. Express 22(4), 4789–4798 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

L. Stryer and R. P. Haugland, “Energy Transfer: A Spectroscopic Ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

J. Zhou, X. Wu, X. Gu, L. Zhou, K. Song, S. Wei, Y. Feng, and J. Shen, “Spectroscopic studies on the interaction of hypocrellin A and hemoglobin,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 72(1), 151–155 (2009).
[Crossref] [PubMed]

Other (1)

G.S. He, In Physics of Nonlinear Optics (World Scientific, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) TEM images of ZnSe:Mn/ZnS QDs samples with average sizes of 12nm. (b) Normalized QDs fluorescence spectrum and the absorption and fluorescence spectra of HA.
Fig. 2
Fig. 2 (a)Fluorescence spectra of HA solutions in different PH values (b)Absorption spectra of HA solutions in two different PH values.
Fig. 3
Fig. 3 (a) Normalized absorption and fluorescence spectrum of HA and the fluorescence spectra of the QDs. (b) Fluorescence spectra of ZnSe:Mn/ZnS QDs-HA systems with different concentrations.
Fig. 4
Fig. 4 Fluorescence lifetime curves of QDs-HA solutions with various A/D concentration ratios at (a)a wavelength of 570 nm (the fluorescence peak wavelength of QDs), (b) a wavelength of 700nm (the fluorescence peak wavelength of HA).
Fig. 5
Fig. 5 Schematic diagram of four-photon excitation.
Fig. 6
Fig. 6 Measured fluorescence intensity as a function of the input laser intensity at 1300nm wavelengths, and the best fitting straight lines.
Fig. 7
Fig. 7 Four-photon absorption induced fluorescence spectra of FRET systems.
Fig. 8
Fig. 8 Cell viability of MCF-7 cells treated with ZnSe:Mn/ZnS QDs for 24h and 48h.
Fig. 9
Fig. 9 (a) The FRET damaging on MCF-7 cells treated with different FRET systems. (b) The FRET damaging on MCF-7 cells with and without irradiation. The concentration of samples 1-6 were 1µM, 5µM, 50µM, 0.5mM, 1mM, and 1.5mM, respectively.

Tables (3)

Tables Icon

Table 1 Fitted fluorescence lifetime of QDs with various A/D ratios in FRET systems. The fitting formula is y = A1*exp(-t/τ1) + A2*exp(-t/τ2), in which A1 + A2 = 1.

Tables Icon

Table 2 Fitted fluorescence lifetime of HA with various A/D ratios in FRET systems.

Tables Icon

Table 3 Fitted fluorescence lifetime and FRET efficiency of FRET systems

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E= nR 0 nR + 0 r 6
y= A 1 *exp( t / τ 1 ) + A 2 *exp( t / τ 2 )
τ = A 1 τ 1 2 + A 2 τ 2 2 A 1 τ 1 + A 2 τ 2
E=1 τ DA τ D
E f E g =4hυ' (4PA)
dI(z) dz =αI(z)β I 2 (z)γ I 3 (z)η I 4 (z)
dI(z) dz =η I 4 (z)
3 λ 0 λ exc 4 λ 0 (4PA)

Metrics