Abstract

We introduce a method for shaping the spectral response of nonlinear light sources by tailoring the quasi-phase matching. Our algorithm relies on engineering the poling to accurately trace a generated target signal field amplitude to determine the desired nonlinearity profile. The proposed poling algorithm results in a poling pattern that is more robust to manufacture, as all domain inversions are of equal width. The poling pattern is verified using a nonlinear beam propagation method simulation. This approach is applied to achieve Gaussian-shaped phase matching along a potassium titanyl phosphate (KTP) crystal in order to generate pure heralded single photons of spectral purity ~0.996—this is highly desirable for heralded single photon quantum optics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral engineering by Gaussian phase-matching for quantum photonics

P. Ben Dixon, Jeffrey H. Shapiro, and Franco N. C. Wong
Opt. Express 21(5) 5879-5890 (2013)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

Indistinguishable single-mode photons from spectrally engineered biphotons

Changchen Chen, Jane E. Heyes, Kyung-Han Hong, Murphy Yuezhen Niu, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Jeffrey H. Shapiro, and Franco N. C. Wong
Opt. Express 27(8) 11626-11634 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [Crossref] [PubMed]
  2. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  3. M. Nielsen and I. Chuang, Quantum computation and quantum information (2000).
  4. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university, 1995).
    [Crossref]
  5. M. Fox, Quantum Optics: An Introduction: An Introduction, vol. 6 (Oxford university, 2006).
  6. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
    [Crossref]
  7. S. Du, “Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons,” Phys. Rev. A 92, 043836 (2015).
    [Crossref]
  8. A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
    [Crossref]
  9. C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B 46, 055501 (2013).
    [Crossref]
  10. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref] [PubMed]
  11. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  12. F. KÃűnig and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
    [Crossref]
  13. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).
  14. L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
    [Crossref]
  15. R. B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [Crossref] [PubMed]
  16. A. M. BraÅĎczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
    [Crossref]
  17. P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
    [Crossref] [PubMed]
  18. A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
    [Crossref]
  19. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
    [Crossref]
  20. M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  21. K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
    [Crossref]
  22. H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quant. Electron. 31, 2107–2113 (1995).
    [Crossref]
  23. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040–5044 (2002).
    [Crossref] [PubMed]
  24. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
    [Crossref] [PubMed]
  25. G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
    [Crossref] [PubMed]
  26. M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
    [Crossref] [PubMed]
  27. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
    [Crossref]
  28. R. W. Boyd, Nonlinear Optics (Academic Press, Burlington, MA, 2008), 3rd ed.

2016 (1)

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

2015 (1)

S. Du, “Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons,” Phys. Rev. A 92, 043836 (2015).
[Crossref]

2013 (6)

2012 (2)

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
[Crossref]

2011 (1)

2010 (2)

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

2004 (1)

F. KÃűnig and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

2003 (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

2002 (1)

2001 (2)

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

1996 (1)

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

1995 (1)

H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quant. Electron. 31, 2107–2113 (1995).
[Crossref]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

1985 (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref]

Ansari, V.

Arnold, J. M.

H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quant. Electron. 31, 2107–2113 (1995).
[Crossref]

Asobe, M.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Benichi, H.

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Bentivegna, M.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, Burlington, MA, 2008), 3rd ed.

BraÅDczyk, A. M.

A. M. BraÅĎczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

Branczyk, A. M.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Brecht, B.

Brod, D. J.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Cassemiro, K. N.

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Chuang, I.

M. Nielsen and I. Chuang, Quantum computation and quantum information (2000).

Cincio, L.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Cohen, O.

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

Crespi, A.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Dirmeier, T.

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Dixon, P. B.

Dosseva, A.

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

Du, S.

S. Du, “Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons,” Phys. Rev. A 92, 043836 (2015).
[Crossref]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Fedrizzi, A.

Flamini, F.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Fox, M.

M. Fox, Quantum Optics: An Introduction: An Introduction, vol. 6 (Oxford university, 2006).

Galvão, E. F.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Grice, W. P.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Harder, G.

Helt, L. G.

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
[Crossref]

Helwig, W.

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

Hong, C. K.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jin, R. B.

Kato, K.

KÃunig, F.

F. KÃűnig and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Laiho, K.

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Latmiral, L.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Liscidini, M.

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
[Crossref]

Mandel, L.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref]

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university, 1995).
[Crossref]

Marquardt, C.

Masoudi, H. M.

H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quant. Electron. 31, 2107–2113 (1995).
[Crossref]

Mataloni, P.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Miyazawa, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Morioka, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nielsen, M.

M. Nielsen and I. Chuang, Quantum computation and quantum information (2000).

Ohara, T.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Osellame, R.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Osorio, C. I.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B 46, 055501 (2013).
[Crossref]

Ralph, T. C.

A. M. BraÅĎczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

Ramponi, R.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Raymer, M. G.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

Sangouard, N.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B 46, 055501 (2013).
[Crossref]

Sasaki, M.

Sato, K.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

SÃuller, C.

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

Sciarrino, F.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Sergienko, A. V.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

Shapiro, J. H.

Shih, Y. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

Shimizu, R.

Silberhorn, C.

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, “An optimized photon pair source for quantum circuits,” Opt. Express 21, 13975–13985 (2013).
[Crossref] [PubMed]

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
[Crossref]

Smith, B. J.

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Spagnolo, N.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Stace, T. M.

Tadanaga, O.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Takada, A.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Takaoka, E.

Takara, H.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Thew, R. T.

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B 46, 055501 (2013).
[Crossref]

U’Ren, A. B.

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

Viggianiello, N.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Vitelli, C.

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

Wakui, K.

Walmsley, I. A.

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

White, A. G.

Wolf, E.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university, 1995).
[Crossref]

Wong, F. N. C.

P. B. Dixon, J. H. Shapiro, and F. N. C. Wong, “Spectral engineering by Gaussian phase-matching for quantum photonics,” Opt. Express 21, 5879–5890 (2013).
[Crossref] [PubMed]

F. KÃűnig and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Yamawaku, J.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

Zhang, L.

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. KÃűnig and F. N. C. Wong, “Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch,” Appl. Phys. Lett. 84, 1644 (2004).
[Crossref]

Electron. Lett. (1)

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103× 10 Gbit/s) signals in PPLN waveguide,” Electron. Lett. 39, 1 (2003).
[Crossref]

IEEE J. Quant. Electron. (1)

H. M. Masoudi and J. M. Arnold, “Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method,” IEEE J. Quant. Electron. 31, 2107–2113 (1995).
[Crossref]

J. Mod. Opt. (1)

L. Zhang, C. SÃűller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt. 59, 1525–1537 (2012).
[Crossref]

J. Opt. Soc. Am B (1)

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am B 29, 2199–2212 (2012).
[Crossref]

J. Phys. B (1)

C. I. Osorio, N. Sangouard, and R. T. Thew, “On the purity and indistinguishability of down-converted photons,” J. Phys. B 46, 055501 (2013).
[Crossref]

New J. Phys. (2)

A. M. BraÅĎczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded Fock states using parametric down-conversion,” New J. Phys. 12, 063001 (2010).
[Crossref]

K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the Hong-Ou-Mandel interference,” New J. Phys. 12, 113052 (2010).
[Crossref]

Opt. Express (5)

Phys. Rev. A (7)

A. Dosseva, L. Cincio, and A. M. Brańczyk, “Shaping the joint spectrum of down-converted photons through optimized custom poling,” Phys. Rev. A 93, 013801 (2016).
[Crossref]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985).
[Crossref]

S. Du, “Quantum-state purity of heralded single photons produced from frequency-anticorrelated biphotons,” Phys. Rev. A 92, 043836 (2015).
[Crossref]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

Other (6)

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” arXiv preprint quant-ph/0611019 (2006).

M. Nielsen and I. Chuang, Quantum computation and quantum information (2000).

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge university, 1995).
[Crossref]

M. Fox, Quantum Optics: An Introduction: An Introduction, vol. 6 (Oxford university, 2006).

M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N. Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E. F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F. Sciarrino, “Experimental scattershot boson sampling,” Sci. Adv.1 (2015).
[Crossref] [PubMed]

R. W. Boyd, Nonlinear Optics (Academic Press, Burlington, MA, 2008), 3rd ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Illustration of the strategy to determine an appropriate poling function that well approximates a desired spectral response, in this case, a Gaussian spectral response. a) The FT of g(x) in Δk. b) The ideal, unwindowed nonlinearity profile. c) The field amplitude that the ideal nonlinearity profile of b) would generate. d) The unknown poling function to approximate c) and, consequently, b) and a). The arrows between the panes indicate the function required to obtain the result shown in one pane, from that of the previous pane. To obtain b) from a), one needs to apply an IFT. To obtain c) from b), one needs to integrate. To obtain d) from c), one needs to apply our algorithm outlined in subsection 2.2.
Fig. 2
Fig. 2 An arbitrary poling configuration is shown and the three poling blocks are labelled: a), b) and c). The oscillatory waveform is the field amplitude and the horizontal lines through the oscillatory waveform indicates the average value of the oscillatory waveform over the domain width, w. Poling block a) does not increase the average field amplitude, poling block b) increases the average level of the field amplitude, and c) is the same as b) except that it decreases the average field amplitude.
Fig. 3
Fig. 3 a): The target field amplitude, utarget, and the true, generated field amplitude that the designed poling would generate, upoling. The width used for the Gaussian profile is σ = L/4; one can see that the efficiency of the source drops by 40% compared to ordinary QPM at this given σ. b): The calculated normalized poling function consisting of inverted domains of a fixed width.
Fig. 4
Fig. 4 a): The field amplitude of the y-polarized pump. A nonlinear BPM simulation of a waveguide in KTP 2 µm wide centered at y = 0. All simulations are normalized to 1. b): The y-polarized signal field amplitude. c): The z-polarized idler field amplitude. d): A 2-D slice of a) at y = 0 showing the depletion in magnitude of the pump field amplitude. e): A 2-D slice of b) at y = 0 showing that the signal field amplitude increases as an error function. f): A 2-D slice of c) at y = 0 showing that the idler field amplitude increases as an error function.
Fig. 5
Fig. 5 The simulated JSAs for a KTP crystal of length 12 mm pumped with pulses centered about a wavelength of 775 nm. a): The simulated JSA for ordinary QPM. The purity [3] was found to be ~0.833 assuming a pump pulse with a FWHM of 1.0 ps. b) The simulated JSA of Dixon et al’s design using a 1.4 nm = 0.63 ps pulse. We simulated the purity of the design to be ~0.971. c): The simulated JSA using the poling algorithm and a pump pulse with a FWHM of 0.80 ps. The purity was found to be ~0.996.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( Δ k ) 0 L d x g ( x ) e j Δ k x ,
A s ( x , Δ k ) = C s 0 x d x g ( x ) e j Δ k x ,
A s ( L , Δ k ) = C s 0 L d x g ( x ) e j Δ k x = C s d x g ( x ) L ( x L 2 ) e j Δ k x = C s Δ k ( g ( x ) ) * sinc ( L 2 Δ k ) L e j Δ k L 2 ,
g ( x ) = exp ( ( x L / 2 ) 2 2 σ 2 ) cos ( 2 π Λ x ) ,
A s ( x , Δ k ) A s ( x , Δ k = 2 π / Λ ) = C s 0 x d x exp ( ( x L / 2 ) 2 2 σ 2 ) = C s π 2 L 4 [ erf ( L 2 x 2 2 L / 4 ) erf ( 2 ) ] ,
u targer ( x ) = A s ( x ) C s .
d d x u target ( x ) 2 π .
e ( x + 2 w ) = u target ( x + 2 w ) ū ( x + 2 w )
| ψ = d ω 1 d ω 2 α ( ω 1 ω 2 ) ϕ ( Δ k ) | ω 1 y | ω 2 z ,
ϕ ( Δ k ) 0 L d x g ( x ) e j Δ k x = d x g ( x ) e j Δ k x * sinc ( L 2 Δ k ) .
ϕ ( Δ k ) exp ( σ 2 ( Δ k ) 2 2 ) * sinc ( L 2 Δ k ) ,
d A s ( x , Δ k ) d x = j 2 ω s 2 A p k s c 2 d ( x ) ( A i ( x , Δ k ) ) * e j Δ k x
d A i ( x , Δ k ) d x = j 2 ω i 2 A p k i c 2 d ( x ) ( A s ( x , Δ k ) ) * e j Δ k x ,
d A s ( x , Δ k ) d x = C s g ( x ) L ( x L 2 ) e j Δ k x
d A i ( x , Δ k ) d x = C i g ( x ) L ( x L 2 ) e j Δ k x ,
A s ( x , Δ k ) = C s 0 x d x g ( x ) e j Δ k x ,

Metrics