Abstract

A series of ZnAgInS (ZAIS) quantum dots were synthesized and their optical properties were tuned by adjusting the reaction times from 5 to 30 min. The emission spectra were observed ranging from 619 to 667 nm. The temperature-dependent photoluminescence properties of ZAIS QDs were investigated from 10 K to 300 K that show a blue shift of spectra line with increasing intensity as well as broadening of spectral line owing to the coupling of the carrier to acoustic phonon. We have also discussed and investigated the internal luminescence mechanism of ZAIS QDs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature dependent photoluminescence of composition tunable ZnxAgInSe quantum dots and temperature sensor application

Qi Ding, Xiaosong Zhang, Lan Li, Xiabing Lou, Jianping Xu, Ping Zhou, and Ming Yan
Opt. Express 25(16) 19065-19076 (2017)

Temperature-dependent photoluminescence properties of Mn:ZnCuInS nanocrystals

Ping Zhou, Xiaosong Zhang, Lan Li, Xiaojuan Liu, Linlin Yuan, and Xuguang Zhang
Opt. Mater. Express 5(9) 2069-2080 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
    [Crossref]
  2. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
    [Crossref] [PubMed]
  3. G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
    [Crossref] [PubMed]
  4. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
    [Crossref] [PubMed]
  5. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  6. W. Zhang and X. Zhong, “Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst,” Inorg. Chem. 50(9), 4065–4072 (2011).
    [Crossref] [PubMed]
  7. A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
    [Crossref] [PubMed]
  8. N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
    [Crossref]
  9. L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
    [Crossref] [PubMed]
  10. S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
    [Crossref] [PubMed]
  11. J. Park and S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011).
    [Crossref]
  12. X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
    [Crossref]
  13. H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
    [Crossref]
  14. Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
    [Crossref]
  15. L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
    [Crossref] [PubMed]
  16. T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
    [Crossref] [PubMed]
  17. T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
    [Crossref] [PubMed]
  18. T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
    [Crossref] [PubMed]
  19. J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
    [Crossref]
  20. S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
    [Crossref] [PubMed]
  21. J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
    [Crossref] [PubMed]
  22. E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
    [Crossref]
  23. D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
    [Crossref]
  24. G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
    [Crossref] [PubMed]
  25. H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
    [Crossref] [PubMed]
  26. D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
    [Crossref]
  27. W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
    [Crossref]
  28. W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
    [Crossref]
  29. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [Crossref]
  30. W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).
  31. A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
    [Crossref]
  32. A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
    [Crossref]
  33. G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
    [Crossref]
  34. X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
    [Crossref]
  35. S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

2015 (1)

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

2014 (2)

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

2013 (2)

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

2012 (3)

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

2011 (9)

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
[Crossref] [PubMed]

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

W. Zhang and X. Zhong, “Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst,” Inorg. Chem. 50(9), 4065–4072 (2011).
[Crossref] [PubMed]

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

J. Park and S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011).
[Crossref]

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

2010 (4)

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

2009 (2)

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

2008 (2)

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[Crossref] [PubMed]

2007 (3)

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

2006 (3)

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[Crossref] [PubMed]

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
[Crossref] [PubMed]

2005 (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

2003 (1)

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

2000 (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[Crossref]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Achilefu, S.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Adachi, T.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Al Salman, A.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Alivisatos, A. P.

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

Anni, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Bai, Z.

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

Bawendi, M. G.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[Crossref]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Bezdetnaya, L.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Bouet, C.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Bujak, P.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Cao, J.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Cassette, E.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Chen, Y. Q.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Chergui, M.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Chu, H.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Chu, H. R.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Cingolani, R.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Cui, T.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

De Giorgi, M.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Deng, D. W.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Dubertret, B.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Elim, H. I.

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

Feng, J.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

Feng, Y.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Gabka, G.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Gao, W. Z.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Giedyk, K.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Golec, B.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Gu, P. F.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Gu, Y.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Hamanaka, Y.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

Han, J. Y.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

He, C.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

He, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Helle, M.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Herbich, J.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Ji, W.

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

Kagan, C. R.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[Crossref]

Kameyama, T.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

Karan, N. S.

S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
[Crossref] [PubMed]

Kim, S. W.

J. Park and S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011).
[Crossref]

Kovalenko, M. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

Kudera, S.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Kudo, A.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Kumar, S.

S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
[Crossref] [PubMed]

Kuwabata, S.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Kuzuya, T.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

Lee, J. S.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

Li, H.

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Li, L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[Crossref] [PubMed]

Li, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Liang, X. J.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Liu, W. Y.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Liu, X.

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Liu, X. J.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Low, C. Y.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Lu, Y.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Luo, L.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Malinowska, K.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Manna, L.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

Marchal, F.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Meisel, A.

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

Meng, X. D.

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Milliron, D. J.

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

Mohamed, M. B.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Morello, G.

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

Murray, C. B.

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[Crossref]

Nam, D. E.

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Nann, T.

S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
[Crossref] [PubMed]

Nie, S.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

Ogawa, S.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

Ogawa, T.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

Ohtani, B.

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Okazaki, K.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Ostrowski, A.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Pan, D.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Park, J.

J. Park and S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011).
[Crossref]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Pons, T.

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

Pradhan, N.

S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
[Crossref] [PubMed]

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

Pron, A.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Qian, Z.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Reiss, P.

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[Crossref] [PubMed]

Rice, L.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Rumbles, G.

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[Crossref] [PubMed]

Sakuraoka, M.

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Sarkar, S.

S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
[Crossref] [PubMed]

Sarma, D. D.

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

Scher, E. C.

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

Scholes, G. D.

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[Crossref] [PubMed]

Shevchenko, E. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

Shi, A.

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Shibayama, T.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Smith, A. M.

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

Song, W. S.

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Sun, M.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Talapin, D. V.

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

Taniguchi, S.

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

Tian, J.

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Tian, L.

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

Tonti, D.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Torimoto, T.

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

Tortschanoff, A.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tsuzuki, M.

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

Uematsu, T.

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

van Mourik, F.

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Vittal, J. J.

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

Wang, D.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Wang, J.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Wang, X.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Wang, X. L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Wang, X. Y.

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Wang, Y.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Wang, Y. D.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Wang, Y. H.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Weng, D.

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Wielgus, I.

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Xi, Q.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

Xiang, W. D.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Xie, C.-P.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Xie, R. G.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Xu, S.

S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
[Crossref] [PubMed]

Xu, S. Y.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

Yang, C.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Yang, F.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

Yang, H.

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

Yang, H. L.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Yang, W. S.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Yang, X.

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

Ye, J.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Ye, M.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Yin, J. Z.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Yu, W. W.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Yuan, L.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Zhai, W. W.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, H. Z.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, J.

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

Zhang, T.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

Zhang, T. Q.

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhang, W.

W. Zhang and X. Zhong, “Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst,” Inorg. Chem. 50(9), 4065–4072 (2011).
[Crossref] [PubMed]

Zhang, X. S.

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

Zhang, Y.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

Zhao, J.

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

Zhong, H.

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Zhong, J.-S.

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

Zhong, X.

W. Zhang and X. Zhong, “Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst,” Inorg. Chem. 50(9), 4065–4072 (2011).
[Crossref] [PubMed]

Zhou, Y.

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

Zhou, Y. L.

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

Zou, B.

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering,” Acc. Chem. Res. 43(2), 190–200 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. Sarkar, N. S. Karan, and N. Pradhan, “Ultrasmall color-tunable copper-doped ternary semiconductor nanocrystal emitters,” Angew. Chem. Int. Ed. Engl. 50(27), 6065–6069 (2011).
[Crossref] [PubMed]

Annu. Rev. Mater. Sci. (1)

C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30(1), 545–610 (2000).
[Crossref]

Appl. Phys. Lett. (1)

A. Al Salman, A. Tortschanoff, M. B. Mohamed, D. Tonti, F. van Mourik, and M. Chergui, “Temperature effects on the spectral properties of ccolloidal CdSe nanodots, nanorods, and tetrapods,” Appl. Phys. Lett. 90(9), 093104 (2007).
[Crossref]

Chem. Commun. (Camb.) (4)

J. Feng, M. Sun, F. Yang, and X. Yang, “A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters,” Chem. Commun. (Camb.) 47(22), 6422–6424 (2011).
[Crossref] [PubMed]

L. Tian, H. I. Elim, W. Ji, and J. J. Vittal, “One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals,” Chem. Commun. (Camb.) 41(41), 4276–4278 (2006).
[Crossref] [PubMed]

T. Uematsu, S. Taniguchi, T. Torimoto, and S. Kuwabata, “Emission quench of water-soluble ZnS-AgInS2 solid solution nanocrystals and its application to chemosensors,” Chem. Commun. (Camb.) 48(48), 7485–7487 (2009).
[Crossref] [PubMed]

T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, and S. Kuwabata, “Remarkable photoluminescence enhancement of ZnS-AgInS2 solid solution nanoparticles by post-synthesis treatment,” Chem. Commun. (Camb.) 46(12), 2082–2084 (2010).
[Crossref] [PubMed]

Chem. Mater. (4)

J. Zhang, R. G. Xie, and W. S. Yang, “A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters,” Chem. Mater. 23(14), 3357–3361 (2011).
[Crossref]

H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, and Y. Li, “Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals,” Chem. Mater. 20(20), 6434–6443 (2008).
[Crossref]

E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya, F. Marchal, and B. Dubertret, “Synthesis and characterization of near-infrared Cu−In−Se/ZnS core/shell quantum dots for in vivo imaging,” Chem. Mater. 22(22), 6117–6124 (2010).
[Crossref]

D. W. Deng, Y. Q. Chen, J. Cao, J. Tian, Z. Qian, S. Achilefu, and Y. Gu, “High-quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Chem. Rev. (1)

D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2009).
[Crossref] [PubMed]

Chin. Phys. B (1)

X. J. Liu, X. S. Zhang, L. Li, X. L. Wang, and L. Yuan, “Fabrication and temperature-dependent photoluminescence spectra of Zn–Cu–In–S quaternary nanocrystals,” Chin. Phys. B 23(11), 117804 (2014).
[Crossref]

Chin. Phys. Lett. (1)

S. Y. Xu, X. S. Zhang, Y. L. Zhou, Q. Xi, and L. Li, “Influence of Si4+ substitution on the temperature-dependent characteristics of Y3Al5O12:Ce,” Chin. Phys. Lett. 20, 037804 (2011).

Inorg. Chem. (2)

W. Zhang and X. Zhong, “Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst,” Inorg. Chem. 50(9), 4065–4072 (2011).
[Crossref] [PubMed]

G. Gabka, P. Bujak, K. Giedyk, A. Ostrowski, K. Malinowska, J. Herbich, B. Golec, I. Wielgus, and A. Pron, “A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control,” Inorg. Chem. 53(10), 5002–5012 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[Crossref] [PubMed]

S. Xu, S. Kumar, and T. Nann, “Rapid synthesis of high-quality InP nanocrystals,” J. Am. Chem. Soc. 128(4), 1054–1055 (2006).
[Crossref] [PubMed]

T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, and S. Kuwabata, “Facile synthesis of ZnS-AgInS2 solid solution nanoparticles for a color-adjustable luminophore,” J. Am. Chem. Soc. 129(41), 12388–12389 (2007).
[Crossref] [PubMed]

J. Lumin. (2)

W. Y. Liu, Y. Zhang, J. Zhao, Y. Feng, D. Wang, T. Zhang, W. Z. Gao, H. Chu, J. Z. Yin, Y. Wang, J. Zhao, and W. W. Yu, “Photoluminescence of indium-rich copper indium sulfide quantum dots,” J. Lumin. 162, 191–196 (2015).
[Crossref]

A. Shi, X. Y. Wang, X. D. Meng, X. Liu, H. Li, and J. Zhao, “Temperature-dependent photoluminescence of CuInS2 quantum dots,” J. Lumin. 132(7), 1819–1823 (2012).
[Crossref]

J. Mater. Chem. (2)

D. E. Nam, W. S. Song, and H. Yang, “Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields,” J. Mater. Chem. 21(45), 18220–18226 (2011).
[Crossref]

J. Park and S. W. Kim, “CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence,” J. Mater. Chem. 21(11), 3745–3750 (2011).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

W. D. Xiang, H. L. Yang, X. J. Liang, J.-S. Zhong, J. Wang, L. Luo, and C.-P. Xie, “Direct synthesis of highly luminescent Cu–Zn–In–S quaternary nanocrystals with tunable photoluminescence spectra and decay times,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(10), 2014–2020 (2013).
[Crossref]

J. Phys. Chem. C (4)

G. Morello, M. De Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, “Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots,” J. Phys. Chem. C 111(16), 5846–5849 (2007).
[Crossref]

W. Y. Liu, Y. Zhang, W. W. Zhai, Y. H. Wang, T. Q. Zhang, P. F. Gu, H. R. Chu, H. Z. Zhang, T. Cui, Y. D. Wang, J. Zhao, and W. W. Yu, “Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots,” J. Phys. Chem. C 117, 19288–19294 (2013).

X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han, and Y. Lu, “A general synthesis of Cu−In−S based multicomponent solid-Solution nanocrystals with tunable band gap, size, and structure,” J. Phys. Chem. C 114(41), 17293–17297 (2010).
[Crossref]

Y. Hamanaka, T. Ogawa, M. Tsuzuki, and T. Kuzuya, “Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure,” J. Phys. Chem. C 115(5), 1786–1792 (2011).
[Crossref]

J. Phys. Chem. Lett. (2)

N. Pradhan and D. D. Sarma, “Advances in light-emitting doped semiconductor nanocrystals,” J. Phys. Chem. Lett. 2(21), 2818–2826 (2011).
[Crossref]

H. Zhong, Z. Bai, and B. Zou, “Tuning the luminescence properties of colloidal I−III−VI semiconductor nanocrystals for optoelectronics and biotechnology applications,” J. Phys. Chem. Lett. 3(21), 3167–3175 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals,” Nat. Mater. 2(6), 382–385 (2003).
[Crossref] [PubMed]

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[Crossref] [PubMed]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[Crossref]

Science (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 TEM pictures of ZnAgInS QDs prepared at various reaction time (a) 10 min, (b) 20 min, (c) 30 min. (d) Selected area electronic diffraction (SAED). (e) The EDS spectrum of the ZnAgInS QDs synthesised at 30 min.
Fig. 2
Fig. 2 (a) PL, (b) UV-vis spectra of ZnAgInS QDs recorded at room temperature for various reaction times, (c)Digital pictures of the samples with various reaction times under the light of room temperature (from left to right 5, 10, 15, 20, 30 and 60 min) (up) and corresponding photographs of ZnAgInS QDs samples under a 365 nm UV lamp irradiation (down).
Fig. 3
Fig. 3 XRD patterns of the ZnAgInS QDs under different reaction time.
Fig. 4
Fig. 4 PL lifetime of ZnAgInS QDs for different reaction time.
Fig. 5
Fig. 5 Electronic energy levels of donor (VS, InAg) and acceptor (VAg) states in ZnAgInS QDs.
Fig. 6
Fig. 6 Temperature dependence spectra of ZnAgInS QDs under various reaction time (a) 5, (b) 10, (c) 15, and (d) 20 min.
Fig. 7
Fig. 7 Temperature-dependent peaks energy of ZnAgInS QDs with different reaction time. Full lines are the fitting result on the basis of Eq. (1).
Fig. 8
Fig. 8 Temperature-dependent peaks energy of ZnAgInS QDs with different reaction time. Full lines are the fitting data according to Eq. (2).
Fig. 9
Fig. 9 Temperature-dependent FWHM of PL spectra for ZnAgInS quantum dots with various reaction time. Full lines are the fitting result on the basis of Eq. (3).
Fig. 10
Fig. 10 PL intensities of ZAIS quantum dots with various reaction times as a function of temperature. Full lines are the fitting result on the basis of Eq. (4).

Tables (6)

Tables Icon

Table 1 Composition Data (EDS Spectra) of ZnAgInS QDs with 30 min.

Tables Icon

Table 2 Fit Parameters Rooting in I(t) = A1exp(−t/τ1) + A2exp(−t/τ2) + A3exp(−t/τ3)

Tables Icon

Table 3 Fitting Results of Temperature-dependent Peaks Energy of ZnAgInS QDs with Different Reaction Time According to Eq. (1)

Tables Icon

Table 4 Fitting Results of Temperature-dependent Peaks Energy of ZnAgInS QDs with Different Reaction Time According to Eq. (2)

Tables Icon

Table 5 Fitting Results of Temperature-dependent FWHM of ZnAgInS QDs with Different Reaction Time According to Eq. (3)

Tables Icon

Table 6 Fitted Parameters of PL Intensities of ZAIS Quantum Dots with Various Particle Size as a Function of Temperature

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E g ( T ) = E g ( 0 ) T 2 β + T
E g ( T ) = E g ( 0 ) 2 S < h ω > [ exp ( < h ω > k B T 1 ) ] 1
Γ ( T ) = Γ inh + σ T + Γ L O [ exp( E L O k B T ) 1 ] 1
I ( T ) = I ( 0 ) 1 + A exp ( Δ E / κ T )

Metrics