Abstract

We describe the behavior of optical trajectories in multipass rotationally asymmetric cavities (RACs) using a phase-space motivated approach. Emphasis is placed on generating long optical paths. A trajectory with an optical path length of 18 m is generated within a 68 cm3 volume. This path length to volume ratio (26.6 cm−2) is large compared to current state of the art multipass cells such as the cylindrical multipass cell (6.6 cm−2) and astigmatic Herriott cell (9 cm−2). Additionally, the effect of small changes to the input conditions on the path length is studied and compared to the astigmatic Herriott cell. This work simplifies the process of designing RACs with long optical path lengths and could lead to broader implementation of these multipass cells.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Astigmatic mirror multipass absorption cells for long-path-length spectroscopy

J. B. McManus, P. L. Kebabian, and M. S. Zahniser
Appl. Opt. 34(18) 3336-3348 (1995)

Multipass cell design for Stark-modulation spectroscopy

Christoph Dyroff, Andreas Zahn, Wolfgang Freude, Bernd Jänker, and Peter Werle
Appl. Opt. 46(19) 4000-4007 (2007)

Compact optical multipass matrix system design based on slicer mirrors

Yin Guo and Liqun Sun
Appl. Opt. 57(5) 1174-1181 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
    [Crossref]
  2. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
    [Crossref]
  3. A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
    [Crossref]
  4. L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
    [Crossref]
  5. J. Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62(8), 906–915 (2008).
    [Crossref] [PubMed]
  6. R. M. Burks and D. S. Hage, “Current trends in the detection of peroxide-based explosives,” Anal. Bioanal. Chem. 395(2), 301–313 (2009).
    [Crossref] [PubMed]
  7. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
    [Crossref]
  8. I. Dunayevskiy, A. Tsekoun, M. Prasanna, R. Go, and C. K. N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46(25), 6397–6404 (2007).
    [Crossref] [PubMed]
  9. G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
    [Crossref]
  10. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50(4), A74–A85 (2011).
    [Crossref] [PubMed]
  11. J. B. McManus, P. L. Kebabian, and C. E. Kolb, “Atmospheric methane measurement instrument using a Zeeman-split He-Ne laser,” Appl. Opt. 28(23), 5016–5023 (1989).
    [Crossref] [PubMed]
  12. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
    [Crossref]
  13. I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
    [Crossref]
  14. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
    [Crossref] [PubMed]
  15. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
    [Crossref]
  16. K. Fuwa and B. L. Valle, “The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert Law,” Anal. Chem. 35(8), 942–946 (1963).
    [Crossref]
  17. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44(31), 6545–6556 (2005).
    [Crossref] [PubMed]
  18. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
    [Crossref] [PubMed]
  19. D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78(3), 033824 (2008).
    [Crossref]
  20. D. Qu and C. Gmachl, “Modeling and design of a highly compact chaotic cavity for optical gas sensing applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2007), pp. 1349–1352.
    [Crossref]
  21. D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
    [Crossref]
  22. G. H. Harden, L. E. Cortes-Herrera, and A. J. Hoffman, “cavity_driver_12p_exit.m,” figshare (2016) [retrieved 16 July 2016], https://osapublishing.figshare.com/s/423f348468c6d17dd101 .
  23. S. M. Lacey, “Ray and wave dynamics in three dimensional asymmetric optical resonators,” Ph.D. Dissertation, Dept. Physics, Univ. of Oregon, Eugene, OR (2003).
  24. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995).
    [Crossref] [PubMed]

2014 (1)

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

2013 (1)

L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
[Crossref]

2012 (1)

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

2011 (1)

2010 (1)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

2009 (2)

R. M. Burks and D. S. Hage, “Current trends in the detection of peroxide-based explosives,” Anal. Bioanal. Chem. 395(2), 301–313 (2009).
[Crossref] [PubMed]

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

2008 (5)

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78(3), 033824 (2008).
[Crossref]

D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
[Crossref]

J. Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62(8), 906–915 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (2)

2004 (1)

2002 (1)

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

1998 (1)

I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
[Crossref]

1995 (1)

1989 (1)

1963 (1)

K. Fuwa and B. L. Valle, “The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert Law,” Anal. Chem. 35(8), 942–946 (1963).
[Crossref]

Arnold, J. T.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Bakhirkin, Y. A.

Bauer, C.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Blaser, S.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Borelli, R.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

Brady, J.

Braunschweig, B.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Burgmeier, J.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Burks, R. M.

R. M. Burks and D. S. Hage, “Current trends in the detection of peroxide-based explosives,” Anal. Bioanal. Chem. 395(2), 301–313 (2009).
[Crossref] [PubMed]

Castro-Suarez, J. R.

L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
[Crossref]

Colao, F.

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Coy, S. L.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004).
[Crossref] [PubMed]

Dubnikova, F.

Dunayevskiy, I.

Fiorani, L.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Fuwa, K.

K. Fuwa and B. L. Valle, “The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert Law,” Anal. Chem. 35(8), 942–946 (1963).
[Crossref]

Giubileo, G.

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Gmachl, C.

D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78(3), 033824 (2008).
[Crossref]

D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
[Crossref]

D. Qu and C. Gmachl, “Modeling and design of a highly compact chaotic cavity for optical gas sensing applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2007), pp. 1349–1352.
[Crossref]

Go, R.

Hage, D. S.

R. M. Burks and D. S. Hage, “Current trends in the detection of peroxide-based explosives,” Anal. Bioanal. Chem. 395(2), 301–313 (2009).
[Crossref] [PubMed]

Hald, J.

Henningsen, J.

Herbst, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

Hernández-Rivera, S. P.

L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
[Crossref]

Herndon, S.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Hildenbrand, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

Holl, G.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Hunter, M.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Hvozdara, L.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Jæger, T.

I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
[Crossref]

Kachanov, A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
[Crossref]

Kebabian, P. L.

Kolb, C. E.

Kosloff, R.

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Kosterev, A. A.

Lambrecht, A.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
[Crossref]

Liu, Z.

D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
[Crossref]

McManus, J. B.

Müller, A.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Nelson, D. D.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50(4), A74–A85 (2011).
[Crossref] [PubMed]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Owano, T. G.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Oxley, J.

Pacheco-Londoño, L. C.

L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
[Crossref]

Paldus, B. A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Palucci, A.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

Patel, C. K. N.

Peterson, J. C.

Pistilli, M.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

Prasanna, M.

Provencal, R. A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Puiu, A.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Qu, D.

D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
[Crossref]

D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78(3), 033824 (2008).
[Crossref]

D. Qu and C. Gmachl, “Modeling and design of a highly compact chaotic cavity for optical gas sensing applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2007), pp. 1349–1352.
[Crossref]

Roller, C.

Rosa, O.

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

Schade, W.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Sharma, A. K.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Shorter, J. H.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Silver, J. A.

Smith, J.

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Steinfeld, J. I.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Tittel, F. K.

Todd, M. W.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Tsekoun, A.

Valle, B. L.

K. Fuwa and B. L. Valle, “The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert Law,” Anal. Chem. 35(8), 942–946 (1963).
[Crossref]

Vodopyanov, K. L.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Wehr, R.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Willer, U.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Wöllenstein, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

Wood, E.

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Wysocki, G.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

Zahniser, M. S.

Zeiri, L.

Zeiri, Y.

Adv. Opt. Technol. (1)

L. C. Pacheco-Londoño, J. R. Castro-Suarez, and S. P. Hernández-Rivera, “Detection of nitroaromatic and peroxide explosives in air using infrared spectroscopy: QCL and FTIR,” Adv. Opt. Technol. 2013, 532670 (2013).
[Crossref]

Anal. Bioanal. Chem. (1)

R. M. Burks and D. S. Hage, “Current trends in the detection of peroxide-based explosives,” Anal. Bioanal. Chem. 395(2), 301–313 (2009).
[Crossref] [PubMed]

Anal. Chem. (1)

K. Fuwa and B. L. Valle, “The physical basis of analytical atomic absorption spectrometry. The pertinence of the Beer-Lambert Law,” Anal. Chem. 35(8), 942–946 (1963).
[Crossref]

Appl. Opt. (6)

Appl. Phys. B (4)

I. Linnerud, P. Kaspersen, and T. Jæger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B 67(3), 297–305 (1998).
[Crossref]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90(2), 165–176 (2008).
[Crossref]

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator,” Appl. Phys. B 75(2–3), 367–376 (2002).
[Crossref]

Appl. Phys. Lett. (1)

D. Qu, Z. Liu, and C. Gmachl, “A compact asymmetric chaotic optical cavity with long optical path lengths,” Appl. Phys. Lett. 93(1), 014101 (2008).
[Crossref]

Appl. Spectrosc. (1)

Laser Phys. (2)

A. Puiu, L. Fiorani, O. Rosa, R. Borelli, M. Pistilli, and A. Palucci, “Lidar/DIAL detection of acetone at 3.3 μm by a tunable OPO laser system,” Laser Phys. 24(8), 085606 (2014).
[Crossref]

G. Giubileo, F. Colao, and A. Puiu, “Identification of standard explosive traces by infrared laser spectroscopy: PCA on LPAS data,” Laser Phys. 22(6), 1033–1037 (2012).
[Crossref]

Opt. Eng. (1)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng. 49(11), 111124 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

D. Qu and C. Gmachl, “Quasichaotic optical multipass cell,” Phys. Rev. A 78(3), 033824 (2008).
[Crossref]

Proc. SPIE (1)

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[Crossref]

Other (3)

D. Qu and C. Gmachl, “Modeling and design of a highly compact chaotic cavity for optical gas sensing applications,” in Proceedings of IEEE Sensors Conference (IEEE, 2007), pp. 1349–1352.
[Crossref]

G. H. Harden, L. E. Cortes-Herrera, and A. J. Hoffman, “cavity_driver_12p_exit.m,” figshare (2016) [retrieved 16 July 2016], https://osapublishing.figshare.com/s/423f348468c6d17dd101 .

S. M. Lacey, “Ray and wave dynamics in three dimensional asymmetric optical resonators,” Ph.D. Dissertation, Dept. Physics, Univ. of Oregon, Eugene, OR (2003).

Supplementary Material (1)

NameDescription
» Dataset 1       Custom MATLAB ray tracing program for calculating the trajectory of rays of light inside a rotationally asymmetric multipass cell.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Depiction of the coordinate system used for defining the cell shape and ray position and momentum. The azimuthal angle φ is defined as increasing counterclockwise from the x-axis, and the vertical angle θ is defined as zero along the z-axis. (b) A schematic of the envelope of the light trajectories in multipass cells under different deformations. Trajectories using cell deformation parameters of (ϵxy, ϵyz) = (0.01, 0.02), (0.02, 0.04), and (0.05, 0.1) are shown by the red, gold, and green shaded regions, respectively. Cells with deformations of (ϵxy, ϵyz) = (0.05, 0.1) and (0.1, 0.2) are shown in dashed lines; the innermost dashed curve has deformation parameters of (0.1, 0.2). (c) Solid model of one half of a RAC to be used as a multipass gas cell with deformation parameters of (ϵxy, ϵyz) = (0.0021, 0.0076).
Fig. 2
Fig. 2 (a) Real space trajectory inside a RAC with deformation ϵxy = 0.01 and ϵyz = 0.03. The input position is given by (φ0, θ0) = (0, 0.5π), and the beam is input at an angle of (φp0, θp0) = (0.99π, 0.485π). (b) A plot of beam size as a function of reflection number for the trajectory in (a). The global focus time is indicated by an arrow. The inset shows a cross section of the beam, which is modeled by a center ray and 12 exterior rays.
Fig. 3
Fig. 3 (a) Color plot of the sum of calculated beam size at 400 reflections divided by the area of the RAC surface covered by reflections for various deformation parameters. The lower left half is left blank, as deformations of this type lead to highly chaotic trajectories. (b) Color plot for global focus time versus cell deformation parameters. Trajectories are calculated using the input position (φ0, θ0) = (0, 0.5π), and an input momentum of (φp0, θp0) = (0.98π, 0.48π). Points with GFTs > 150 are shown in bright yellow.
Fig. 4
Fig. 4 (a) The surface of section for a quadrupole deformed circle. Chaotic trajectories produce scattered points on this plot, while some trajectories are confined to sets of curves. The two bounce trajectories considered here are confined to curves centered on φ = π and split over φ = 0 and φ = 2π. (b) A schematic showing the angle of incidence χ.
Fig. 5
Fig. 5 (a) Angular position for each reflection on the hemisphere of the cell along the negative x-direction (Fig. 1(a)). Each point corresponds to a reflection on a trajectory with an OPL of 18 m. (b) Color histogram of the number of reflections per bin for 105 reflections on the given trajectory versus the angular position of the reflections.
Fig. 6
Fig. 6 (a) A plot of the number of reflections that occur before any part of the beam exits the RAC for different input momenta. For certain input momenta the number of reflections is relatively small, but a small alteration to the angle at which the beam is input may greatly increase the number of reflections. Very long OPLs with more than 1500 reflections (> 75 m) are possible, but require extremely accurate alignment. (b) Number of reflections plotted versus input position.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x(ϕ,θ)= R 0 [ 1+ ε yz θ ]sin θ [ 1+ ε yz cos2θϕ ]cosϕ 1 ε yz
y(ϕ,θ)= R 0 [ 1+ ε yz cos2 θ ]sin θ [ 1+ ε yz cos2ϕ ]sinϕ 1 ε yz
z(ϕ,θ)= π 2 tan 1 [ 1 ε xy cotθ 1+ ε xy cos2ϕ ]
θ (ϕ,θ)= π 2 tan 1 [ 1 ε xy cotθ 1+ ε xy cos2ϕ ]

Metrics