Abstract

We experimentally demonstrate PAM-8 generation from binary electrical signals driving a silicon multi-electrode Mach-Zehnder modulator acting as an optical digital-to-analog converter. Measured BER in back-to-back configuration is used to evaluate signal quality. We demonstrate 38 GBd PAM-8 transmission below the forward error correction (FEC) threshold using minimum mean square error (MMSE) equalization. The results show that modulators with segmented phase shifters can be advantageously used to eliminate the need for high bandwidth electronic digital-to-analog converters in the generation of multilevel signals. These modulators, that can be designed and fabricated with standard CMOS compatible tools and processes, are of high interest for short range high-speed data links.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic dual-drive MIM based 56 Gb/s DAC-less and DSP-free PAM-4 transmission

Rui Li, David Patel, Eslam El-Fiky, Alireza Samani, Zhenping Xing, Yun Wang, and David V. Plant
Opt. Express 26(5) 5395-5407 (2018)

Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s

K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle
Opt. Express 24(3) 2413-2419 (2016)

100 Gb/s PAM4 transmission system for datacenter interconnects using a SiP ME-MZM based DAC-less transmitter and a VSB self-coherent receiver

Zhenping Xing, Alireza Samani, Meng Xiang, Eslam El-Fiky, Thang M. Hoang, David Patel, Rui Li, Meng Qiu, Md. Ghulam Saber, Mohamed Morsy-Osman, and David V. Plant
Opt. Express 26(18) 23969-23979 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Cole, “Beyond 100G client optics,” IEEE Commun. Mag. 50(2), s58–s66 (2012).
    [Crossref]
  2. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates,” Electron. Lett. 45(12), 578–581 (2009).
    [Crossref]
  4. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Pulse Amplitude Modulation with a Femtojoule Silicon Microring Modulator at 80-Gb/s,” in 12th IEEE Int. Conf. Group IV Photonics, post-deadline session, Vancouver (2015).
  5. K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s,” Opt. Express 24(3), 2413–2419 (2016).
    [Crossref] [PubMed]
  6. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).
  7. D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
    [Crossref] [PubMed]
  8. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
    [Crossref]
  9. H. Griesser, A. Dochhan, and J.-P. Elbers, “DSP-enhanced Transmission for 100G+ DWDM Data Center Interconnects,” in Adv. Photonics Commun. 2014 Pap. ST1D4, ST1D.4, Optical Society of America (2014).
  10. E. Vanin, “Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion,” Opt. Express 19(5), 4280–4293 (2011).
    [Crossref] [PubMed]
  11. M. Chagnon, M. Osman, M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, C. Paquet, S. Lessard, and D. Plant, “Experimental study of 112 Gb/s short reach transmission employing PAM formats and SiP intensity modulator at 1.3 μm,” Opt. Express 22(17), 21018–21036 (2014).
    [Crossref] [PubMed]
  12. M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
    [Crossref]
  13. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved Digital-to-Analog Conversion Using Multi-Electrode Mach-Zehnder Interferometer,” J. Lightwave Technol. 26(21), 3567–3575 (2008).
    [Crossref]
  14. S. Bhoja, and others, “Study of PAM modulation for 100GE over a single laser,” IEEE Gen 100G Opt. Ethernet Study Group (2012).
  15. X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20Gb/s NRZ/PAM-4 1V transmitter in 40nm CMOS driving a Si-photonic modulator in 0.13 um CMOS,” in 2013 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers 128–129 (2013).
  16. A. Shastri, C. Muzio, M. Webster, G. Jeans, P. Metz, S. Sunder, B. Chattin, B. Dama, and K. Shastri, “Ultra-Low-Power Single-Polarization QAM-16 Generation Without DAC Using a CMOS Photonics Based Segmented Modulator,” J. Lightwave Technol. 33(6), 1255–1260 (2015).
    [Crossref]
  17. D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
    [Crossref]
  18. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
    [Crossref]
  19. A Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Höhns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module,” in OFC’2016, post-deadline paper Th5C.6, Anaheim, USA.
    [Crossref]
  20. A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
    [Crossref] [PubMed]
  21. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, “Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers,” Opt. Lett. 35(15), 2526–2528 (2010).
    [Crossref] [PubMed]
  22. M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel Spot-Size Converter for Optical Fiber to sub-um Silicon Waveguide Coupling with Low Loss, Low Wavelength Dependence and High Tolerance to Alignment,” in 2015 41st Eur. Conf. Opt. Commun. ECOC, Mo.4.2.4 (2015).

2016 (2)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

K. Bédard, A. D. Simard, B. Filion, Y. Painchaud, L. A. Rusch, and S. LaRochelle, “Dual phase-shift Bragg grating silicon photonic modulator operating up to 60 Gb/s,” Opt. Express 24(3), 2413–2419 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (1)

2013 (2)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

2012 (2)

C. Cole, “Beyond 100G client optics,” IEEE Commun. Mag. 50(2), s58–s66 (2012).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates,” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

2008 (1)

1980 (1)

M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
[Crossref]

Amrani, O.

Bédard, K.

Bock, P. J.

Bowers, J. E.

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates,” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Chagnon, M.

Chattin, B.

Cheben, P.

Chen, S.-W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

C. Cole, “Beyond 100G client optics,” IEEE Commun. Mag. 50(2), s58–s66 (2012).
[Crossref]

Dama, B.

Delâge, A.

Densmore, A.

Ehrlichman, Y.

El-Fiky, E.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

Filion, B.

Gagné, J.-F.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Ghosh, S.

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Hall, T. J.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Janz, S.

Jeans, G.

Lamontagne, B.

Lapointe, J.

LaRochelle, S.

Latrasse, C.

Lessard, S.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Liang, D.

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates,” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Metz, P.

Muzio, C.

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Osman, M.

Painchaud, Y.

Papuchon, M.

M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
[Crossref]

Paquet, C.

Patel, D.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Plant, D.

Plant, D. V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Poulin, M.

Puech, C.

M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
[Crossref]

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Rusch, L. A.

Ruschin, S.

Samani, A.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Schmid, J. H.

Schnapper, A.

M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
[Crossref]

Shastri, A.

Shastri, K.

Simard, A. D.

Sunder, S.

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Vanin, E.

Veerasubramanian, V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, and D. V. Plant, “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express 23(11), 14263–14287 (2015).
[Crossref] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

Webster, M.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Xu, D.-X.

Electron. Lett. (2)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates,” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

M. Papuchon, C. Puech, and A. Schnapper, “4-Bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16(4), 142–144 (1980).
[Crossref]

IEEE Commun. Mag. (3)

C. Cole, “Beyond 100G client optics,” IEEE Commun. Mag. 50(2), s58–s66 (2012).
[Crossref]

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50(2), s67–s72 (2012).
[Crossref]

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

IEEE Photonics J. (1)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A Silicon Photonic PAM-4 Modulator Based on Dual-Parallel Mach-Zehnder Interferometers,” IEEE Photonics J. 8(1), 1–10 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Patel, A. Samani, V. Veerasubramanian, S. Ghosh, and D. V. Plant, “Silicon Photonic Segmented Modulator-Based Electro-Optic DAC for 100 Gb/s PAM-4 Generation,” IEEE Photonics Technol. Lett. 27(23), 2433–2436 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Opt. Express (5)

Opt. Lett. (1)

Other (6)

M.-J. Picard, Y. Painchaud, C. Latrasse, C. Larouche, F. Pelletier, and M. Poulin, “Novel Spot-Size Converter for Optical Fiber to sub-um Silicon Waveguide Coupling with Low Loss, Low Wavelength Dependence and High Tolerance to Alignment,” in 2015 41st Eur. Conf. Opt. Commun. ECOC, Mo.4.2.4 (2015).

A Aimone, I. Garcia Lopez, S. Alreesh, P. Rito, T. Brast, V. Höhns, G. Fiol, M. Gruner, J. K. Fischer, J. Honecker, A. G. Steffan, D. Kissinger, A. C. Ulusoy, and M. Schell, “DAC-free Ultra-Low-Power Dual-Polarization 64-QAM Transmission with InP IQ Segmented MZM Module,” in OFC’2016, post-deadline paper Th5C.6, Anaheim, USA.
[Crossref]

S. Bhoja, and others, “Study of PAM modulation for 100GE over a single laser,” IEEE Gen 100G Opt. Ethernet Study Group (2012).

X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, and W. Wilson, “A 20Gb/s NRZ/PAM-4 1V transmitter in 40nm CMOS driving a Si-photonic modulator in 0.13 um CMOS,” in 2013 IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers 128–129 (2013).

H. Griesser, A. Dochhan, and J.-P. Elbers, “DSP-enhanced Transmission for 100G+ DWDM Data Center Interconnects,” in Adv. Photonics Commun. 2014 Pap. ST1D4, ST1D.4, Optical Society of America (2014).

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Pulse Amplitude Modulation with a Femtojoule Silicon Microring Modulator at 80-Gb/s,” in 12th IEEE Int. Conf. Group IV Photonics, post-deadline session, Vancouver (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the segmented MZM with SPP electrodes.
Fig. 2
Fig. 2 (a) Insertion loss measurement of the MZM without any voltage applied to the electrodes (b) Normalized E/O |S21| for the long phase shifter with reverse bias voltages from 0 V to 8 V.
Fig. 3
Fig. 3 Experimental setup used to characterize PAM-8 transmission with the segmented MZM.
Fig. 4
Fig. 4 Eye diagrams with 5 dBm received power.
Fig. 5
Fig. 5 BER as a function of the received power.

Metrics