Abstract

We present a computational study of terahertz optical properties of a grating-coupled plasmonic structure based on micrometer-thin InSb layers. We find two strong absorption resonances that we interpret as standing surface plasmon modes and investigate their dispersion relations, dependence on InSb thickness, and the spatial distribution of the electric field. The observed surface plasmon modes are well described by a simple theory of the air/InSb/air tri-layer. The plasmonic response of the grating/InSb structure is highly sensitive to the dielectric environment and the presence of an analyte (e.g., lactose) at the InSb interface, which is promising for terahertz plasmonic sensor applications. We determine the sensor sensitivity to be 7200 nm per refractive index unit (or 0.06 THz per refractive index unit). The lower surface plasmon mode also exhibits a splitting when tuned in resonance with the vibrational mode of lactose at 1.37 THz. We propose that such interaction between surface plasmon and vibrational modes can be used as the basis for a new sensing modality that allows the detection of terahertz vibrational fingerprints of an analyte.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Planar antenna array as a highly sensitive terahertz sensor

Fei Shen, Jianyuan Qin, and Zhanghua Han
Appl. Opt. 58(3) 540-544 (2019)

Broadband surface plasmon wave excitation using dispersion engineering

Michael Chasnitsky, Michael Golosovsky, and Dan Davidov
Opt. Express 23(23) 30570-30582 (2015)

Tunable hybridization induced transparency for efficient terahertz sensing

Zhanghua Han, Alana Mauluidy Soehartono, Bobo Gu, Xunbin Wei, Ken-Tye Yong, and Yuechun Shi
Opt. Express 27(6) 9032-9039 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).
  2. M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64, 39–44 (2011).
    [Crossref]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  4. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
    [Crossref]
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
    [Crossref]
  6. T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
    [Crossref]
  7. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
    [Crossref]
  8. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
    [Crossref]
  9. C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
    [Crossref]
  10. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
    [Crossref] [PubMed]
  11. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
    [Crossref]
  12. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [Crossref] [PubMed]
  13. B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
    [Crossref]
  14. P. van den Berg and J. Borburgh, “Dispersion of surface plasmons in InSb-gratings,” Appl. Phys. 3, 55–60 (1974).
    [Crossref]
  15. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).
    [Crossref] [PubMed]
  16. T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
    [Crossref]
  17. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
    [Crossref]
  18. S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
    [Crossref] [PubMed]
  19. Y. U. Jung, I. M. Mandel, I. Bendoym, A. B. Golovin, and D. T. Crouse, “Surface plasmon sorting and engineered dispersion curves using multilayer doped semiconductors,” J. Opt. Soc. Am. B 32, 1007–1012 (2015).
    [Crossref]
  20. L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
    [Crossref]
  21. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
    [Crossref]
  22. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).
  23. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
    [Crossref]
  24. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids,” J. Opt. Soc. Am. B 26, A79–A89 (2009).
    [Crossref]
  25. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
    [Crossref]
  26. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
    [Crossref]

2015 (1)

2014 (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

2013 (2)

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

2012 (1)

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

2011 (3)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

2010 (1)

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
[Crossref]

2009 (2)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids,” J. Opt. Soc. Am. B 26, A79–A89 (2009).
[Crossref]

2008 (4)

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
[Crossref] [PubMed]

2007 (1)

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

2006 (3)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

2005 (3)

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).
[Crossref] [PubMed]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[Crossref]

2003 (1)

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
[Crossref]

1974 (1)

P. van den Berg and J. Borburgh, “Dispersion of surface plasmons in InSb-gratings,” Appl. Phys. 3, 55–60 (1974).
[Crossref]

Agrawal, A.

Andrews, S.

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Ang, S. S.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Atwater, H.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
[Crossref]

Azad, A. K.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]

Barnes, W. L.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

Bendoym, I.

Bjarnason, J. E.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Bolivar, P. H.

Borburgh, J.

P. van den Berg and J. Borburgh, “Dispersion of surface plasmons in InSb-gratings,” Appl. Phys. 3, 55–60 (1974).
[Crossref]

Breese, M. B. H.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Brown, E. R.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Chen, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

Chua, S. J.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Chun, H.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Chung, T.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Crouse, D. T.

Deng, L.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Fedor, A. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

Forst, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[Crossref]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
[Crossref]

Golovin, A. B.

Gómez Rivas, J.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).
[Crossref] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

Grischkowsky, D.

Gu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

Han, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

Hanham, S. M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Haring Bolivar, P.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

Harsha, S. S.

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[Crossref]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
[Crossref]

Hong, M.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

Janke, C.

Jung, Y. U.

Klein, N.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Korter, T. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

Kurz, H.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13, 847–859 (2005).
[Crossref] [PubMed]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

Laman, N.

Lee, B.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Lee, S.-Y.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Liew, Y. F.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Lim, K. P.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Liu, H.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Maier, S. A.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Mandel, I. M.

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Melinger, J. S.

Moreno, E.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

Nagel, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).

Nahata, A.

Ng, B.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Ngo, C. Y.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pendry, J. B.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Polman, A.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
[Crossref]

Sambles, J. R.

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

Schotsch, C.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

Song, E. Y.

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

Tang, J.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Teng, J.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Teng, J. H.

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Tian, Z.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

van den Berg, P.

P. van den Berg and J. Borburgh, “Dispersion of surface plasmons in InSb-gratings,” Appl. Phys. 3, 55–60 (1974).
[Crossref]

Walther, M.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[Crossref]

Williams, C.

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

Wu, J.

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Wu, Q. Y.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
[Crossref]

Yoon, S. F.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Zhang, W.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]

Zhang, X.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Zhao, Y.

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]

Zhu, J.

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

Zhu, W.

ACS Photon. (1)

B. Ng, S. M. Hanham, J. Wu, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Broadband terahertz sensing on spoof plasmon surfaces,” ACS Photon. 1, 1059–1067 (2014).
[Crossref]

Adv. Mater. (1)

S. M. Hanham, A. I. Fernández-Domínguez, J. H. Teng, S. S. Ang, K. P. Lim, S. F. Yoon, C. Y. Ngo, N. Klein, J. B. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. H. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1, 543–548 (2013).
[Crossref]

Appl. Phys. (1)

P. van den Berg and J. Borburgh, “Dispersion of surface plasmons in InSb-gratings,” Appl. Phys. 3, 55–60 (1974).
[Crossref]

Appl. Phys. Lett. (4)

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93, 241115 (2008).
[Crossref]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett. 90, 061908 (2007).
[Crossref]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87, 261107 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys.: Condens. Mater. (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys.: Condens. Mater. 18, S601 (2006).

Nat. Photon. (1)

C. Williams, S. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photon. 2, 175 (2008).
[Crossref]

Nature Mater. (1)

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205 (2010).
[Crossref]

Opt. Commun. (1)

J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129–3133 (2011).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

T. H. Isaac, J. Gómez Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, “Surface plasmon mediated transmission of subwavelength slits at THz frequencies,” Phys. Rev. B 77, 113411 (2008).
[Crossref]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[Crossref]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79, 233104 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[Crossref] [PubMed]

Phys. Today (1)

M. I. Stockman, “Nanoplasmonics: the physics behind the applications,” Phys. Today 64, 39–44 (2011).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Sens. Actuat. B: Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuat. B: Chem. 54, 3–15 (1999).
[Crossref]

Sensors (1)

T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, “Plasmonic nanostructures for nano-scale bio-sensing,” Sensors 11, 10907 (2011).
[Crossref]

Other (1)

S. A. Maier, Plasmonics: fundamentals and applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The gold grating and InSb layer structure is taken to stretch indefinitely in the x and y directions. The THz wave impinges straight down along the negative z direction and is polarized along x.
Fig. 2
Fig. 2 (a) Transmission of the 5 μm-thick InSb layer with (thick solid lines) and without (dashed lines) the gold grating as a function of the bulk plasma frequency, which is indicated by the labels above each spectrum. The light-gray line shows the transmission of the structure with ωp = 0. (b) Transmission of the 2 μm-thick (thick solid lines) and 8 μm-thick (dashed lines) InSb layer with gold grating as a function of the bulk plasma frequency. The light-gray line shows the transmission of a free-standing grating. The grating period is d = 60 μm for all curves in (a) and (b).
Fig. 3
Fig. 3 Open circles - computational frequency vs. wavevector ω(β) dispersion of the resonances on the grating/InSb structure for different InSb thicknesses. Solid lines - thickness-dependent theoretical dispersion of SPP modes in the air/InSb/air trilayer structure. The single interface line shows the theoretical SPP dispersion on a single InSb/air interface without a grating, where both air and InSb assume infinite thickness. The bulk plasma frequency of InSb is ωp = 1.44 THz.
Fig. 4
Fig. 4 (a),(b) Spatial distribution of the electric field amplitude for the lower (1.36 THz) and higher (1.42 THz) SPP modes in the 5 μm−thick InSb with grating period d = 60 μm. The bulk plasma frequency is ωp = 1.44 THz. The color bar indicates the relative amplitude scale using arbitrary units. The InSb layer fills the vertical (−5 μm, 0 μm) interval. The gold strips cover the horizontal (0 μm, 15 μm) and (45 μm, 60 μm) intervals at the top surface of InSb. (c),(d) The spatial distribution of the Ex component of the electric field for the lower and higher SPP modes. (e),(f) The spatial distribution of the Ez component of the electric field for the lower and higher SPP modes.
Fig. 5
Fig. 5 (a),(b) The electric field components Ex (x) and Ez (x) along the lower InSb surface in the 5 μm-thick InSb structure at the lower (1.36 THz) and higher (1.42 THz) SPP modes. The grating period is d = 60 μm (β0 = 2π/d) and bulk plasma frequency is ωp = 1.44 THz. The horizontal black lines indicate the position of the grating gold strips on the upper surface of the InSb wafer. (c),(d) Amplitudes of the Fourier series expansion for the electric fields Ex (x) and Ez (x) shown in (a) and (b). In (c), only the cosine terms are shown, and the sine terms are all zero. In (d), only the sine terms are shown, and the cosine terms are all zero.
Fig. 6
Fig. 6 Transmission of a 2 μm grating/InSb structure with (red) and without (black) a 1 μm dielectric layer at the bottom InSb surface. The THz refractive index of the dielectric layer is n = 2. InSb bulk plasma frequency is ωp = 1.86 THz. The grating period is d = 60 μm.
Fig. 7
Fig. 7 (a) Interaction of the lower-frequency SPP mode with the lactose vibrational resonance at 1.37 THz (the arrow). The lower SPP mode is shown for the bulk plasma frequencies of ωp = 1.65 THz, 1.79 THz, and 1.91 THz. The red lines show the transmission without the vibrational resonance (resonance strength set to zero). The blue lines show the transmission with the vibrational resonance. The InSb thickness is 2 μm and the grating period is d = 120 μm. (b) Transmission of the grating/InSb structure with the 1 μm lactose layer with (blue line) and without (red line) the vibrational resonance when the SPP modes are detuned far away from 1.37 THz. The arrows indicate the lower and higher SPP modes and the lactose resonance at 1.37 THz.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k i 2 = β 2 k 0 2 i
tanh k 1 a = k 2 1 k 1 2 ,
tanh k 1 a = k 1 2 k 2 1 ,
( ω ) = ( 1 ω p 2 ω 2 + i ω γ ) ,
ω = ω p [ 1 + ( 2 / ) tanh ( a β ) ] 1 / 2

Metrics