Abstract

An integrated photonic platform with “anchored-membrane” structures, the T-Guide, is proposed, numerically investigated, fabricated and characterized. These compact air-clad structures have high index contrast and are much more stable than prior membrane-type structures. Their semi-infinite geometry enables single-mode and single-polarization (SMSP) operation over unprecedented bandwidths. Modal simulations quantify this behavior, showing that an SMSP window of 2.75 octaves (1.2–8.1 μm) is feasible for silicon T-Guides, spanning almost the entire transparency range of silicon. Dispersion engineering for T-Guides yields broad regions of anomalous group velocity dispersion, rendering them a promising platform for nonlinear applications such as wideband frequency conversion. Cut-back measurements of fabricated silicon T-guides at λ = 3.64 μm show low propagation losses of 1.75 ± 0.3 dB/cm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of ultra-broadband single-mode and single-polarization operation in T-Guides

Jeff Chiles and Sasan Fathpour
Opt. Lett. 41(16) 3836-3839 (2016)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths

Daniel Benedikovic, Mathias Berciano, Carlos Alonso-Ramos, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, and Laurent Vivien
Opt. Express 25(16) 19468-19478 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
    [Crossref]
  2. K. K. Y. Lee, Y. Avniel, and S. G. Johnson, “Design strategies and rigorous conditions for single-polarization single-mode waveguides,” Opt. Express 16(19), 15170–15184 (2008).
    [Crossref] [PubMed]
  3. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15(10), 1384–1386 (2003).
    [Crossref]
  4. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24(2), 825–830 (2006).
    [Crossref]
  5. L. An, Z. Zheng, Z. Li, Y. Liu, T. Zhou, and J. Cheng, “Ultra-wideband single-polarization single-mode photonic crystal fiber with high nonlinearity and low dispersion,” in Communications and Photonics Conference and Exhibition (ACP, 2009), pp. 1–5.
  6. X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
    [Crossref]
  7. F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
    [Crossref]
  8. A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, and A. L. Gaeta, “Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide,” Opt. Lett. 40(21), 5117–5120 (2015).
    [Crossref] [PubMed]
  9. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Experimental demonstration of linearly polarized 2-10 μm supercontinuum generation in a chalcogenide rib waveguide,” Opt. Lett. 41(5), 958–961 (2016).
    [Crossref] [PubMed]
  10. A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
    [Crossref]
  11. M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
    [Crossref]
  12. C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, and Y. Fainman, “Compact and integrated TM-pass waveguide polarizer,” Opt. Express 13(14), 5347–5352 (2005).
    [Crossref] [PubMed]
  13. J. Cheng, W. Zhang, Q. Zhou, Y. Wang, Y. Huang, and J. Peng, “Single polarization transmission in pedestal-supported silicon waveguides,” Opt. Lett. 36(10), 1797–1799 (2011).
    [Crossref] [PubMed]
  14. J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
    [Crossref]
  15. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  16. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express 18(12), 12127–12135 (2010).
    [Crossref] [PubMed]
  17. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
    [Crossref]
  18. N. Singh, D. D. Hudson, and B. J. Eggleton, “Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation,” Opt. Express 23(13), 17345–17354 (2015).
    [Crossref] [PubMed]
  19. O. Powell, “Single-mode condition for silicon rib waveguides,” J. Lightwave Technol. 20(10), 1851–1855 (2002).
    [Crossref]
  20. J. Ma and S. Fathpour, “Noise figure in near-infrared amorphous and mid-infrared crystalline silicon optical parametric amplifiers,” J. Lightwave Technol. 31(19), 3181–3187 (2013).
    [Crossref]
  21. J. Ma and S. Fathpour, “Pump-to-Stokes relative intensity noise transfer and analytical modeling of mid-infrared silicon Raman lasers,” Opt. Express 20(16), 17962–17972 (2012).
    [Crossref] [PubMed]
  22. J. Chiles and S. Fathpour, “A Reliable approach to membrane photonics: the T-Guide” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STu4R.3.
    [Crossref]
  23. J. Chiles and S. Fathpour, “Demonstration of ultra-broadband single-mode and single-polarization operation in T-Guides,” Opt. Lett.in press.

2016 (1)

2015 (2)

2014 (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

2013 (3)

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

J. Ma and S. Fathpour, “Noise figure in near-infrared amorphous and mid-infrared crystalline silicon optical parametric amplifiers,” J. Lightwave Technol. 31(19), 3181–3187 (2013).
[Crossref]

2012 (1)

2011 (2)

J. Cheng, W. Zhang, Q. Zhou, Y. Wang, Y. Huang, and J. Peng, “Single polarization transmission in pedestal-supported silicon waveguides,” Opt. Lett. 36(10), 1797–1799 (2011).
[Crossref] [PubMed]

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

2010 (2)

2008 (1)

2007 (1)

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

2002 (1)

1983 (1)

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

1981 (1)

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

Armenise, M. N.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Asher, W.

Avniel, Y.

Baehr-Jones, T.

Chen, C.-H.

Cheng, J.

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

J. Chiles and S. Fathpour, “Demonstration of ultra-broadband single-mode and single-polarization operation in T-Guides,” Opt. Lett.in press.

Choi, D.-Y.

Ciminelli, C.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Dell’Olio, F.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Demokan, M. S.

Eggleton, B. J.

Fainman, Y.

Fathpour, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

J. Ma and S. Fathpour, “Noise figure in near-infrared amorphous and mid-infrared crystalline silicon optical parametric amplifiers,” J. Lightwave Technol. 31(19), 3181–3187 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

J. Ma and S. Fathpour, “Pump-to-Stokes relative intensity noise transfer and analytical modeling of mid-infrared silicon Raman lasers,” Opt. Express 20(16), 17962–17972 (2012).
[Crossref] [PubMed]

J. Chiles and S. Fathpour, “Demonstration of ultra-broadband single-mode and single-polarization operation in T-Guides,” Opt. Lett.in press.

Gaeta, A. L.

Gai, X.

Han, T.

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Hochberg, M.

Howard, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Hsu, T.-I.

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

Huang, Y.

Hudson, D. D.

Ilic, R.

Jin, W.

Johnson, A. R.

Johnson, S. G.

Joshi, C.

Ju, J.

Keller, U.

Khan, S.

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

Klenner, A.

Koch, T. L.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

Lamb, E. S.

Lamont, M. R. E.

Lee, K. K. Y.

Levy, U.

Lipson, M.

Liu, Y. G.

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Luke, K.

Luther-Davies, B.

Ma, J.

J. Ma and S. Fathpour, “Noise figure in near-infrared amorphous and mid-infrared crystalline silicon optical parametric amplifiers,” J. Lightwave Technol. 31(19), 3181–3187 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

J. Ma and S. Fathpour, “Pump-to-Stokes relative intensity noise transfer and analytical modeling of mid-infrared silicon Raman lasers,” Opt. Express 20(16), 17962–17972 (2012).
[Crossref] [PubMed]

Ma, P.

MacChesney, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Madden, S.

Mayer, A. S.

Mitchell, A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Okawachi, Y.

Oliner, A. A.

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

Pafchek, R. M.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Pang, L.

Peng, J.

Peng, S.-T.

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

Penkov, B.

Pleibel, W.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Powell, O.

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

Sanchez, A.

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

Sears, F.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Simpson, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Singh, N.

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Spott, A.

Stolen, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1(2), 370–374 (1983).
[Crossref]

Tai, B.

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Tatoli, T.

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

Tsai, C.-H.

Vu, K.

Wang, R.

Wang, Y.

Wang, Z.

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Webster, M. A.

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

Wise, F. W.

Yang, Z.

Yu, Y.

Zhang, W.

Zheng, X.

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

Zhou, Q.

Appl. Phys. Lett. (2)

J. Chiles, S. Khan, J. Ma, and S. Fathpour, “High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics,” Appl. Phys. Lett. 103(15), 151106 (2013).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonic,” Appl. Phys. Lett. 102(12), 121104 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15(10), 1384–1386 (2003).
[Crossref]

X. Zheng, Y. G. Liu, Z. Wang, T. Han, and B. Tai, “Tunable single-polarization single-mode photonic crystal fiber based on liquid infiltrating,” IEEE Photonics Technol. Lett. 23(11), 709–711 (2011).
[Crossref]

M. A. Webster, R. M. Pafchek, A. Mitchell, and T. L. Koch, “Width dependence of inherent TM-mode lateral leakage loss in silicon-on-insulator ridge waveguides,” IEEE Photonics Technol. Lett. 19(6), 429–431 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. A. Oliner, S.-T. Peng, T.-I. Hsu, and A. Sanchez, “Guidance and leakage properties of a class of open dielectric waveguides: part II–new physical effects,” IEEE Trans. Microw. Theory Tech. 29(9), 855–869 (1981).
[Crossref]

J. Eur. Opt. Soc. (1)

F. Dell’Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in miniaturized optical gyroscopes,” J. Eur. Opt. Soc. 9, 14013 (2014).
[Crossref]

J. Lightwave Technol. (4)

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Other (3)

J. Chiles and S. Fathpour, “A Reliable approach to membrane photonics: the T-Guide” in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper STu4R.3.
[Crossref]

J. Chiles and S. Fathpour, “Demonstration of ultra-broadband single-mode and single-polarization operation in T-Guides,” Opt. Lett.in press.

L. An, Z. Zheng, Z. Li, Y. Liu, T. Zhou, and J. Cheng, “Ultra-wideband single-polarization single-mode photonic crystal fiber with high nonlinearity and low dispersion,” in Communications and Photonics Conference and Exhibition (ACP, 2009), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of an anchored-membrane waveguide or T-Guide. The simulated intensity profile of a typical guided mode is overlaid at the junction between the post and the slab.
Fig. 2
Fig. 2 Simulated intensity profile of the TE mode for different post widths (a) w = 1.2 μm; (b) w = 1.9 μm.
Fig. 3
Fig. 3 Effect of increasing the post width on the position of the optical mode. A wider post increases the TM-like planar mode index in the post region, which increases the index contrast (left axis), resulting in a higher fraction of optical power in the post (right axis).
Fig. 4
Fig. 4 (a) Post width vs. effective index for various wavelengths. TM modes are plotted as dashed lines and TE as solid lines; (b) Guided mode transmission windows corresponding to several post widths, spanning from 1.2 μm up to the 10 dB/cm leakage loss cutoff for each case.
Fig. 5
Fig. 5 Simulated total GVD of various silicon T-Guide designs: (i) w = 0.85 μm, t = 0.64 μm, and (ii) w = 1.6 μm, t = 1.4 μm.
Fig. 6
Fig. 6 (a) SEM cross section of a fabricated Si T-Guide; (b) Cut-back measurements of two different post widths for lengths of 5 and 2 cm.

Metrics