Abstract

In an intensity-modulation direct-detection (IMDD) orthogonal frequency division multiplexing (OFDM) signal format, radio frequency (RF) power fading produces non-uniform receiving performance among the subcarriers due to chromatic dispersion. Hence each subscriber experiences distinct quality of service (QoS) in conventional frequency division multiple access (FDMA). In this paper, a multicarrier code division multiple access (MC-CDMA) signal along with multicode interference (MCI) cancellation process is proposed and experimentally demonstrated to enhance the receiving performance in an IMDD long reach passive optical network (LR-PON). With the proposed scheme, the receiving performance of each subcarrier can be equalized so that a universal transmitter design at central office (CO) can support all the subscribers with their locations ranging from back-to-back to 100 km. Our experimental results also reveal that, even under 20 dB RF power fading, the proposed scheme can still provide over 21.7 dB power budget and only approximately 2 dB sensitivity deviation is observed in an IMDD LR-PON system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
MC-CDMA Enhanced LR-PON Using Widely Wavelength Lockable FPLD With Low Facet Reflectance

You-Wei Chen, Yu-Chieh Chi, Huai-Yung Wang, Cheng-Ting Tsai, Zu-Kai Weng, Kai-Ming Feng, and Gong-Ru Lin
J. Opt. Commun. Netw. 9(9) 747-755 (2017)

Over 210 Gb/s PDM multiband DDO-OFDM LR-PON downstream with simple self-polarization diversity

You-Wei Chen, Jhih-Heng Yan, Yu-Mao Wang, Mu-Fan Chang, Wei-Ren Peng, and Kai-Ming Feng
Opt. Express 23(14) 18525-18533 (2015)

OFDM RF power-fading circumvention for long-reach WDM-PON

C. W. Chow, C. H. Yeh, and J. Y. Sung
Opt. Express 22(20) 24392-24397 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals,” Opt. Express 21(23), 28154–28166 (2013).
    [Crossref] [PubMed]
  2. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol. 30(4), 493–503 (2012).
    [Crossref]
  3. W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 19(3), 134–136 (2007).
    [Crossref] [PubMed]
  4. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
    [Crossref] [PubMed]
  5. C. W. Chow, C. H. Yeh, and J. Y. Sung, “OFDM RF power-fading circumvention for long-reach WDM-PON,” Opt. Express 22(20), 24392–24397 (2014).
    [Crossref] [PubMed]
  6. H.-Y. Chen, C.-C. Wei, I.-C. Lu, H.-H. Chu, Y.-C. Chen, and J. Chen, “High-capacity and high-loss-budget OFDM long-reach PON without an optical amplifier,” J. Opt. Commun. Netw. 7(1), A59–A65 (2015).
    [Crossref]
  7. Y.-W. Chen, Y.-T. Liao, T.-N. Lai, M.-F. Chang, and K.-M. Feng, “Power budget enhancement in an IMDD PON downstream with multicarrier code division multiple access,” in Proceedings of Conference on Lasers and Electro-Optics (2016), paper JTh2A.120.
    [Crossref]
  8. Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
    [Crossref]
  9. S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.
  10. T. Minn and K.-Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA,” J. Sel. Area. Commun. 18(8), 1429–1440 (2000).
    [Crossref]
  11. ITU-T Recommendation G.975.1, Appendix I.9, 2004.

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2011 (1)

2008 (1)

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

2007 (1)

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 19(3), 134–136 (2007).
[Crossref] [PubMed]

2000 (1)

T. Minn and K.-Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA,” J. Sel. Area. Commun. 18(8), 1429–1440 (2000).
[Crossref]

Chen, H.-Y.

Chen, J.

Chen, Y.-C.

Chen, Y.-W.

Chow, C. W.

Chu, H.-H.

Cvijetic, M.

Cvijetic, N.

Feng, K.-M.

Higuchi, K.

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

Hsu, D.-Z.

Huang, M.-F.

Huang, Y.-K.

Ip, E.

Li, W.-Y.

Lu, I.-C.

Memon, A. A.

S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.

Minn, T.

T. Minn and K.-Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA,” J. Sel. Area. Commun. 18(8), 1429–1440 (2000).
[Crossref]

Ng, T.-S.

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

Sawahashi, M.

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

Shah, S.

S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.

Shen, K.-H.

Shieh, W.

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 19(3), 134–136 (2007).
[Crossref] [PubMed]

Siu, K.-Y.

T. Minn and K.-Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA,” J. Sel. Area. Commun. 18(8), 1429–1440 (2000).
[Crossref]

Sung, J. Y.

Umrani, A. W.

S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.

Wang, J.

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

Wang, T.

Wei, C.-C.

Yan, J.-H.

Yeh, C. H.

Zafi, S. M.

S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.

Zhou, Y.

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

Commun. Mag. (1)

Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi, and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag. 46(3), 38–49 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Shieh, “PMD-supported coherent optical OFDM systems,” IEEE Photonics Technol. Lett. 19(3), 134–136 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

J. Sel. Area. Commun. (1)

T. Minn and K.-Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor codes in W-CDMA,” J. Sel. Area. Commun. 18(8), 1429–1440 (2000).
[Crossref]

Opt. Express (3)

Other (3)

ITU-T Recommendation G.975.1, Appendix I.9, 2004.

Y.-W. Chen, Y.-T. Liao, T.-N. Lai, M.-F. Chang, and K.-M. Feng, “Power budget enhancement in an IMDD PON downstream with multicarrier code division multiple access,” in Proceedings of Conference on Lasers and Electro-Optics (2016), paper JTh2A.120.
[Crossref]

S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proceedings of Progress In Electromagnetics Research Symposium (2011), pp. 1396–1399.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The conceptual diagram of IMDD-PONs in a region of 20-100 km; (a) Distinct downstream transmitter designs depending on users’ locations and receiving performances; (b) A downstream transmitter design for arbitrary users via a broadcasting scheme with a shared feeder fiber.
Fig. 2
Fig. 2 The conceptual diagram of IMDD FDMA-OFDM and MC-CDMA signals with RF power fading.
Fig. 3
Fig. 3 The offline encoder DSP processing of OFDM (w/o frequency spreading) and MC-CDMA (w/ frequency spreading).
Fig. 4
Fig. 4 The offline decoder DSP processing of OFDM and MC-CDMA with ZF, MMSE and MCI cancellation.
Fig. 5
Fig. 5 The RF channel fading response over 25-100 km transmission.
Fig. 6
Fig. 6 The experimental setup of the conventional IMDD OFDM PON and the proposed MC-CDMA PON.
Fig. 7
Fig. 7 The BER performance versus received power with different SF number and equalizers in decoding processing over 25, 50, 75 and 100 km transmission.
Fig. 8
Fig. 8 The subcarrier BER performance in FDMA-OFDM and MC-CDMA with SF = 16 (i.e. 16 users) at −13 dBm received power, where the best and worst cases of FDMA-OFDM are marked in blue and gray, respectively. (a) 25, (b) 50, (c) 75, and (d) 100 km transmission.
Fig. 9
Fig. 9 The average, best and worst subscribers’ BER performance of FDMA-OFDM and MC-CDMA with SF = 16 in BTB and over 100 km transmission.
Fig. 10
Fig. 10 The power budget versus different transmission distance with 16 users.

Tables (1)

Tables Icon

Table 1 Experiment Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C S F ,n C S F ,m ={ 1,n=m 0,nm ,
d n =( d n1 , d n2 ,... d nq 1th copy , d n1 , d n2 ,... d nq 2th copy ,..., d n1 , d n2 ,... d nq Nth copy ),
C n =( C n1 , C n1 ,... C n1 M N , C n2 , C n2 ,... C n2 M N ,..., C nN , C nN ,... C nN M N ).
S(i)= n=1 N d n C n [ i ] ,
y k,q = l ( n=1 N d n C n [ l ]H[ l ]+n[ l ] ) G[ l ] C k [ l ], = S k,q +MC I k,q +η
MC I k,q = l n=1 nk N d n C n [ l ]H[ l ]G[ l ] C k [ l ],

Metrics