Abstract

The spatial resolution limited by the size of the spatial light modulator (SLM) in the holographic projection can hardly be increased, and speckle noise always appears to induce the degradation of image quality. In this paper, the holographic projection with higher image quality is presented. The spatial resolution of the reconstructed image is 2 times of that of the existing holographic projection, and speckles are suppressed well at the same time. Finally, the effectiveness of the holographic projection is verified in experiments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-iterative phase hologram computation for low speckle holographic image projection

Deniz Mengu, Erdem Ulusoy, and Hakan Urey
Opt. Express 24(5) 4462-4476 (2016)

Image magnification in lensless holographic projection using double-sampling Fresnel diffraction

Weidong Qu, Huarong Gu, Hao Zhang, and Qiaofeng Tan
Appl. Opt. 54(34) 10018-10021 (2015)

High-accuracy method for holographic image projection with suppressed speckle noise

Hui Pang, Jiazhou Wang, Axiu Cao, and Qiling Deng
Opt. Express 24(20) 22766-22776 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
    [Crossref]
  2. E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35(20), 3399–3401 (2010).
    [Crossref] [PubMed]
  3. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
    [Crossref] [PubMed]
  4. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  5. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).
  6. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19(3), 297–305 (1980).
    [Crossref]
  7. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
    [Crossref]
  8. J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Company Publishers, 2007).
  9. J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
    [Crossref]
  10. A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20(1), 22–27 (2012).
    [Crossref]
  11. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35(8), 1227–1229 (2010).
    [Crossref] [PubMed]
  12. T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
    [Crossref]
  13. T. Shimobaba, M. Makowski, T. Kakue, M. Oikawa, N. Okada, Y. Endo, R. Hirayama, and T. Ito, “Lensless zoomable holographic projection using scaled Fresnel diffraction,” Opt. Express 21(21), 25285–25290 (2013).
    [Crossref] [PubMed]
  14. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [Crossref] [PubMed]
  15. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29(14), 1668–1670 (2004).
    [Crossref] [PubMed]
  16. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
    [Crossref] [PubMed]
  17. W. Qu, H. Gu, Q. Tan, and G. Jin, “Precise design of two-dimensional diffractive optical elements for beam shaping,” Appl. Opt. 54(21), 6521–6525 (2015).
    [Crossref] [PubMed]

2015 (1)

2013 (3)

2012 (1)

A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20(1), 22–27 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (2)

2007 (1)

J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
[Crossref]

2004 (1)

1999 (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

1980 (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19(3), 297–305 (1980).
[Crossref]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Buckley, E.

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

E. Buckley, “Holographic projector using one lens,” Opt. Lett. 35(20), 3399–3401 (2010).
[Crossref] [PubMed]

Ducin, I.

Endo, Y.

Fajst, A.

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Fienup, J. R.

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19(3), 297–305 (1980).
[Crossref]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Gaska, J. P.

J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Geri, A. G.

A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20(1), 22–27 (2012).
[Crossref]

Geri, G. A.

J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
[Crossref]

Gu, H.

Hirayama, R.

Ichihashi, Y.

Ito, T.

Jin, G.

Kakue, T.

Kolodziejczyk, A.

Liu, J.

Makowski, M.

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Masuda, N.

Oi, R.

Oikawa, M.

Okada, N.

Qu, W.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Shimobaba, T.

Siemion, A.

Suszek, J.

Sypek, M.

Tai, C.

J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
[Crossref]

Takaki, Y.

Tan, Q.

Wang, Y.

Williams, L. A.

A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20(1), 22–27 (2012).
[Crossref]

Xie, J.

Yamaguchi, I.

Yamaguchi, Y.

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

Yamamoto, K.

Yaroslavsky, L. P.

Yokouchi, M.

Zhang, F.

Zhang, H.

Appl. Opt. (2)

J. Disp. Technol. (1)

E. Buckley, “Holographic laser projection,” J. Disp. Technol. 7(3), 135–140 (2011).
[Crossref]

J. Opt. (1)

T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito, “Aliasing-reduced Fresnel diffraction with scale and shift operations,” J. Opt. 15(7), 075405 (2013).
[Crossref]

J. Soc. Inf. Disp. (2)

J. P. Gaska, C. Tai, and G. A. Geri, “Laser-speckle properties and their effect on target detection,” J. Soc. Inf. Disp. 15(12), 1023–1028 (2007).
[Crossref]

A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20(1), 22–27 (2012).
[Crossref]

Opt. Commun. (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164(4–6), 233–245 (1999).
[Crossref]

Opt. Eng. (1)

J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19(3), 297–305 (1980).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Other (1)

J. W. Goodman, Speckle phenomena in optics: theory and applications (Roberts & Company Publishers, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The resolution test target with 15.3μm × 15.3μm interval, (b) the re-calculated result of the developed algorithm with 3μm × 3μm interval.
Fig. 2
Fig. 2 (a) The resolution test target with 30.6μm × 30.6μm interval, (b) The simulation result with the GS algorithm with 30.6μm × 30.6μm interval, (c) The re-calculated result with 3μm × 3μm interval.
Fig. 3
Fig. 3 Experimental results obtained (a) by the developed algorithm and (b) by the GS algorithm.
Fig. 4
Fig. 4 Experimental results obtained from (a) 4 holograms by the developed algorithm and (b) 10 holograms by the GS algorithm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| U f , k + 1 | = [ ( 1 ξ ) + ξ ( B / | U f , k | ) γ ] B ,
ERR = m = 1 M × M ( | U f , m | 2 B m 2 ) 2 / m = 1 M × M B m 4 ,

Metrics