Abstract

We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent population trapping based atomic reservoir for almost perfect higher-order squeezing

Wan Wang, Xiangming Hu, and Jun Xu
Opt. Express 27(21) 30530-30551 (2019)

Spin squeezing, entanglement, and coherence in two driven, dissipative, nonlinear cavities coupled with single- and two-photon exchange

Ali Ü. C. Hardal and Özgür E. Müstecaplıoglu
J. Opt. Soc. Am. B 31(6) 1402-1409 (2014)

One-way Einstein-Podolsky-Rosen steering via atomic coherence

Wenxue Zhong, Guangling Cheng, and Xiangming Hu
Opt. Express 25(10) 11584-11597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
    [Crossref]
  2. J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
    [Crossref]
  3. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
    [Crossref]
  4. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
    [Crossref]
  6. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [Crossref] [PubMed]
  7. D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
    [Crossref]
  8. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  9. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
    [Crossref] [PubMed]
  10. S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
    [Crossref] [PubMed]
  11. A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
    [Crossref] [PubMed]
  12. H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
    [Crossref] [PubMed]
  13. E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
    [Crossref] [PubMed]
  14. A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
    [Crossref] [PubMed]
  15. X. M. Hu, “Entanglement generation by dissipation in or beyond dark resonances,” Phys. Rev. A 92, 022329 (2015).
    [Crossref]
  16. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–44 (1997).
    [Crossref]
  17. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
    [Crossref]
  18. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
    [Crossref]
  19. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  20. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
    [Crossref]
  21. A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
    [Crossref] [PubMed]
  22. A. Sinatra, “Quantum correlations of two optical fields close to electromagnetically induced transparency,” Phys. Rev. Lett. 97, 253601 (2006).
    [Crossref]
  23. P. B. Blostein and M. Bienert, “Opacity of electromagnetically induced transparency for quantum fluctuations,” Phys. Rev. Lett. 98, 033602 (2007).
    [Crossref]
  24. C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
    [Crossref]
  25. V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
    [Crossref]
  26. J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
    [Crossref]
  27. A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
    [Crossref]
  28. M. O. Scully, “Correlated spontaneous-emission lasers: quenching of quantum fluctuations in the relative phase angle,” Phys. Rev. Lett. 55, 2802–2805 (1985).
    [Crossref] [PubMed]
  29. M. O. Scully and M. S. Zubairy, “Theory of the quantum-beat laser,” Phys. Rev. A 35, 752–758 (1987).
    [Crossref]
  30. J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
    [Crossref]
  31. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 78, 388–391 (1996).
    [Crossref]
  32. N. Lu, “Quantum theory of correlated-emission lasers: vacuum state for the mode of the relative phase and the relative amplitude,” Phys. Rev. A 45, 8154–8164 (1992).
    [Crossref] [PubMed]
  33. M. P. Winters and J. L. Hall, “Correlated spontaneous emission in a Zeeman laser,” Phys. Rev. Lett. 65, 3116–3119 (1990).
    [Crossref] [PubMed]
  34. I. Steiner and P. E. Toschek, “Quenching quantum phase noise: correlated spontaneous emission versus phase locking,” Phys. Rev. Lett. 74, 4639–4642 (1995).
    [Crossref] [PubMed]
  35. X. Zhang and X. M. Hu, “Entanglement between collective fields via atomic coherence effects,” Phys. Rev. A 81, 013811 (2010).
    [Crossref]
  36. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  37. G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
    [Crossref] [PubMed]
  38. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).
  39. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  40. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
    [Crossref]
  41. J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
    [Crossref]

2015 (2)

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

X. M. Hu, “Entanglement generation by dissipation in or beyond dark resonances,” Phys. Rev. A 92, 022329 (2015).
[Crossref]

2013 (1)

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

2011 (2)

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

2010 (1)

X. Zhang and X. M. Hu, “Entanglement between collective fields via atomic coherence effects,” Phys. Rev. A 81, 013811 (2010).
[Crossref]

2007 (3)

P. B. Blostein and M. Bienert, “Opacity of electromagnetically induced transparency for quantum fluctuations,” Phys. Rev. Lett. 98, 033602 (2007).
[Crossref]

J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
[Crossref]

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

2006 (3)

A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
[Crossref] [PubMed]

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

A. Sinatra, “Quantum correlations of two optical fields close to electromagnetically induced transparency,” Phys. Rev. Lett. 97, 253601 (2006).
[Crossref]

2005 (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

2003 (2)

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

2000 (1)

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

1998 (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

1997 (3)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–44 (1997).
[Crossref]

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref]

1996 (1)

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 78, 388–391 (1996).
[Crossref]

1995 (2)

I. Steiner and P. E. Toschek, “Quenching quantum phase noise: correlated spontaneous emission versus phase locking,” Phys. Rev. Lett. 74, 4639–4642 (1995).
[Crossref] [PubMed]

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[Crossref]

1993 (1)

G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
[Crossref] [PubMed]

1992 (3)

N. Lu, “Quantum theory of correlated-emission lasers: vacuum state for the mode of the relative phase and the relative amplitude,” Phys. Rev. A 45, 8154–8164 (1992).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

1990 (1)

M. P. Winters and J. L. Hall, “Correlated spontaneous emission in a Zeeman laser,” Phys. Rev. Lett. 65, 3116–3119 (1990).
[Crossref] [PubMed]

1988 (1)

J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
[Crossref]

1987 (1)

M. O. Scully and M. S. Zubairy, “Theory of the quantum-beat laser,” Phys. Rev. A 35, 752–758 (1987).
[Crossref]

1985 (1)

M. O. Scully, “Correlated spontaneous-emission lasers: quenching of quantum fluctuations in the relative phase angle,” Phys. Rev. Lett. 55, 2802–2805 (1985).
[Crossref] [PubMed]

1983 (1)

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

1980 (1)

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Agarwal, G. S.

G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
[Crossref] [PubMed]

Alzar, C. L. G.

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

Arimondo, E.

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Bergou, J.

J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
[Crossref]

Bienert, M.

P. B. Blostein and M. Bienert, “Opacity of electromagnetically induced transparency for quantum fluctuations,” Phys. Rev. Lett. 98, 033602 (2007).
[Crossref]

Blostein, P. B.

P. B. Blostein and M. Bienert, “Opacity of electromagnetically induced transparency for quantum fluctuations,” Phys. Rev. Lett. 98, 033602 (2007).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

Bruß, D.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Caves, C. M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Chuang, I. L.

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Ciampini, M. A.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Cirac, J. I.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
[Crossref] [PubMed]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

Cruz, L. S.

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

Cviklinski, J.

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

Dalla Torre, E. G.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Dantan, A.

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

Davidovich, L.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Demler, E.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

DiVincenzo, D. P.

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[Crossref]

Drever, R. W. P.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Duan, L. M.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Giacobino, E.

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

Giedke, G.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

Gómez, J. G. A.

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

Grangier, Ph.

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Grelu, Ph.

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Hall, J. L.

M. P. Winters and J. L. Hall, “Correlated spontaneous emission in a Zeeman laser,” Phys. Rev. Lett. 65, 3116–3119 (1990).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–44 (1997).
[Crossref]

Hu, X. M.

X. M. Hu, “Entanglement generation by dissipation in or beyond dark resonances,” Phys. Rev. A 92, 022329 (2015).
[Crossref]

X. Zhang and X. M. Hu, “Entanglement between collective fields via atomic coherence effects,” Phys. Rev. A 81, 013811 (2010).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Jensen, K.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

Julsgaard, B.

J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
[Crossref]

Krauter, H.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Kuzmich, A.

A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref]

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Lange, W.

G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
[Crossref] [PubMed]

Lu, N.

N. Lu, “Quantum theory of correlated-emission lasers: vacuum state for the mode of the relative phase and the relative amplitude,” Phys. Rev. A 45, 8154–8164 (1992).
[Crossref] [PubMed]

Lukin, M. D.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

Ma, J.

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

Macchiavello, C.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

Mataloni, P.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
[Crossref]

Mølmer, K.

A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref]

Morigi, G.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Muschik, C. A.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Nielson, M. A.

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Nori, F.

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

Nussenzveig, P.

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

Orieux, A.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Orszag, M.

J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
[Crossref]

Otterbach, J.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Parkins, A. S.

A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
[Crossref] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

Petersen, J. M.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Pielawa, S.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Pinard, M.

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Poizat, J. -Ph.

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Polzik, E. S.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
[Crossref]

A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref]

Roch, J. -F.

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rossi, M.

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

Rostovtsev, Y. V.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Sandberg, V. D.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Santos, M. F.

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

Sargent, M.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Sautenkov, V. A.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

Scully, M. O.

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 78, 388–391 (1996).
[Crossref]

J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
[Crossref]

M. O. Scully and M. S. Zubairy, “Theory of the quantum-beat laser,” Phys. Rev. A 35, 752–758 (1987).
[Crossref]

M. O. Scully, “Correlated spontaneous-emission lasers: quenching of quantum fluctuations in the relative phase angle,” Phys. Rev. Lett. 55, 2802–2805 (1985).
[Crossref] [PubMed]

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Sherson, J.

J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
[Crossref]

Sinatra, A.

A. Sinatra, “Quantum correlations of two optical fields close to electromagnetically induced transparency,” Phys. Rev. Lett. 97, 253601 (2006).
[Crossref]

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Solano, E.

A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
[Crossref] [PubMed]

Steiner, I.

I. Steiner and P. E. Toschek, “Quenching quantum phase noise: correlated spontaneous emission versus phase locking,” Phys. Rev. Lett. 74, 4639–4642 (1995).
[Crossref] [PubMed]

Sun, C. P.

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

Thorne, K. S.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Toschek, P. E.

I. Steiner and P. E. Toschek, “Quenching quantum phase noise: correlated spontaneous emission versus phase locking,” Phys. Rev. Lett. 74, 4639–4642 (1995).
[Crossref] [PubMed]

Vigneron, K.

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

Vitali, D.

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

Vuletic, V.

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
[Crossref]

Walther, H.

G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
[Crossref] [PubMed]

Wang, X. G.

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

Wasilewski, W.

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Winters, M. P.

M. P. Winters and J. L. Hall, “Correlated spontaneous emission in a Zeeman laser,” Phys. Rev. Lett. 65, 3116–3119 (1990).
[Crossref] [PubMed]

Wooters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

Zhang, X.

X. Zhang and X. M. Hu, “Entanglement between collective fields via atomic coherence effects,” Phys. Rev. A 81, 013811 (2010).
[Crossref]

Zhu, S. Y.

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 78, 388–391 (1996).
[Crossref]

Zimmermann, M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Zoller, P.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, “Theory of the quantum-beat laser,” Phys. Rev. A 35, 752–758 (1987).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Adv. At., Mol., Opt. Phys. (1)

J. Sherson, B. Julsgaard, and E. S. Polzik, “Deterministic atom-light quantum interface,” Adv. At., Mol., Opt. Phys. 54, 81–130 (2007).
[Crossref]

Europhys. Lett. (1)

C. L. G. Alzar, L. S. Cruz, J. G. A. Gómez, M. F. Santos, and P. Nussenzveig, “Super-Poissonian intensity fluctuations and correlations between pump and probe fields in electromagetically induced transparency,” Europhys. Lett. 61, 485–491 (2003).
[Crossref]

J. Mod. Opt. (1)

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[Crossref]

Nature (1)

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

Phys. Rep. (1)

J. Ma, X. G. Wang, C. P. Sun, and F. Nori, “Quantum spin squeezing,” Phys. Rep. 509, 89–165 (2011).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (7)

V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, “Switching between photon-photon correlations and Raman anticorrelations in a coherently prepared Rb vapor,” Phys. Rev. A 72, 065801 (2005).
[Crossref]

X. M. Hu, “Entanglement generation by dissipation in or beyond dark resonances,” Phys. Rev. A 92, 022329 (2015).
[Crossref]

M. O. Scully and M. S. Zubairy, “Theory of the quantum-beat laser,” Phys. Rev. A 35, 752–758 (1987).
[Crossref]

J. Bergou, M. Orszag, and M. O. Scully, “Correlated-emission laser: phase noise quenching via coherent pumping and the effect of atomic motion,” Phys. Rev. A 38, 768–772 (1988).
[Crossref]

N. Lu, “Quantum theory of correlated-emission lasers: vacuum state for the mode of the relative phase and the relative amplitude,” Phys. Rev. A 45, 8154–8164 (1992).
[Crossref] [PubMed]

G. S. Agarwal, W. Lange, and H. Walther, “Intense-field renormalization of cavity-induced spontaneous emission,” Phys. Rev. A 48, 4555–4568 (1993).
[Crossref] [PubMed]

X. Zhang and X. M. Hu, “Entanglement between collective fields via atomic coherence effects,” Phys. Rev. A 81, 013811 (2010).
[Crossref]

Phys. Rev. Lett. (17)

M. P. Winters and J. L. Hall, “Correlated spontaneous emission in a Zeeman laser,” Phys. Rev. Lett. 65, 3116–3119 (1990).
[Crossref] [PubMed]

I. Steiner and P. E. Toschek, “Quenching quantum phase noise: correlated spontaneous emission versus phase locking,” Phys. Rev. Lett. 74, 4639–4642 (1995).
[Crossref] [PubMed]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 78, 388–391 (1996).
[Crossref]

A. Dantan, J. Cviklinski, E. Giacobino, and M. Pinard, “Spin squeezing and light entanglement in coherent population trapping,” Phys. Rev. Lett. 97, 023605 (2006).
[Crossref] [PubMed]

A. Sinatra, “Quantum correlations of two optical fields close to electromagnetically induced transparency,” Phys. Rev. Lett. 97, 253601 (2006).
[Crossref]

P. B. Blostein and M. Bienert, “Opacity of electromagnetically induced transparency for quantum fluctuations,” Phys. Rev. Lett. 98, 033602 (2007).
[Crossref]

J. -F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J. -Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997).
[Crossref]

A. Kuzmich, K. Mølmer, and E. S. Polzik, “Spin squeezing in an ensemble of atoms illuminated with squeezed light,” Phys. Rev. Lett. 79, 4782–4785 (1997).
[Crossref]

M. O. Scully, “Correlated spontaneous-emission lasers: quenching of quantum fluctuations in the relative phase angle,” Phys. Rev. Lett. 55, 2802–2805 (1985).
[Crossref] [PubMed]

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000).
[Crossref] [PubMed]

S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein-Podolsky-Rosen-entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007).
[Crossref] [PubMed]

A. S. Parkins, E. Solano, and J. I. Cirac, “Unconditional two-mode squeezing of separated atomic ensembles,” Phys. Rev. Lett. 96, 053602 (2006).
[Crossref] [PubMed]

H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, “Entanglement generated by dissipation and steady state entanglement of two macroscopic objects,” Phys. Rev. Lett. 107, 080503 (2011).
[Crossref] [PubMed]

E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, “Dissipative preparation of spin squeezed atomic ensembles in a steady state,” Phys. Rev. Lett. 110, 120402 (2013).
[Crossref] [PubMed]

A. Orieux, M. A. Ciampini, P. Mataloni, D. Bruß, M. Rossi, and C. Macchiavello, “Experimental generation of robust entanglement from classical correlations via local dissipation,” Phys. Rev. Lett. 115, 160503 (2015).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wooters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1992).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–44 (1997).
[Crossref]

Rev. Mod. Phys. (3)

M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Science (1)

D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995).
[Crossref]

Other (6)

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
[Crossref]

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Diagrammatic sketch of quantum beat system. (a) An ensemble of V-type atoms is coupled to two quantized fields a1,2. Inset: The V-type atoms are placed at the intersection of two cavity fields which are driven by two classical fields ε1,2, respectively. (b) As an equivalent form, the collective modes ab,d are coupled to the two collective transitions |b, d〉 ↔ |3〉 respectively. No population is in the state |d〉 due to the spontaneous emission |d〉 → |3〉 and the absence of pumping field from |3〉 to |d〉.
Fig. 2
Fig. 2 Interactions between the fluctuating parts of the cavity fields and the dressed atomic spins. The two cavity modes are coupled to each dressed transition.
Fig. 3
Fig. 3 Dissipation and entanglement of the cavity fields a1,2 by the dressed atom spins σ1,2. (a) The two-mode squeezing and entanglement of two cavity fields a1,2 are based on the synchronized transferring and squeezing interactions that are introduced by the engineered reservoirs σ1,2. (b) The Bogoliubov field modes b1,2 are dissipated by the dressed atom spins σ1,2.
Fig. 4
Fig. 4 Dissipation and entanglement of the dressed atom spins σ1,2 by the cavity fields a1,2. (a) The two-mode squeezing and entanglement of two cavity fields σ1,2 are based on the synchronized transferring and squeezing interactions that are introduced by the engineered reservoirs a1,2. (b) The Bogoliubov spin modes π1,2 are dissipated by the cavity fields a1,2.
Fig. 5
Fig. 5 Two-mode field variances δ X α ± 2 versus the normalized detuning Δ Ω for g N = 20 γ and κ = γ (dotted line), 0.1γ (dashed line), 0.01γ (solid line).
Fig. 6
Fig. 6 Two-mode field variances δ X v ± 2 versus the normalized detuning Δ Ω for g N = 20 γ and γ = κ (dotted line), 0.1κ (dashed line), 0.01κ (solid line).
Fig. 7
Fig. 7 Excited-state spin variances δ J y , z 2 / | J x | versus the normalized detuning Δ Ω for g N = 20 κ and γ = κ (dotted line), 0.1κ (dashed line), 0.01κ (solid line).
Fig. 8
Fig. 8 Diagrammatic sketch of CPT system. (a) An ensemble of Λ-type atoms interacts with two cavity fields with Rabi frequencies Ω1,2. CPT occurs when the system is resonant. (b) We use the superposition states |b, d〉 instead of the bare states |1, 2〉. All the population is trapped in the dark state |d〉 due to the transition |b〉 → |3〉 and the successive spontaneous emission |3〉 → |d〉 (dash line).
Fig. 9
Fig. 9 A comparison of dissipative transitions between the CPT case (a) and the quantum-beat case (b). The thickness of the levels represents the relative weights of the popuations of different dressed states. In the CPT case (a), the dissipative transitions occur from one common state to the other two different states |0〉 → |±〉, and in the quantum-beat case (b), the dissipative transitions happen from the two different states to the other common state |±〉 → |0〉.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ = i [ H , ρ ] + ρ ,
H = l = 1 , 2 [ Δ l σ l l + Δ c l a l a l + g l ( a l σ l 3 + σ 3 l a l ) + i ( ε l a l ε l * a l ) ] ,
ρ = a ρ + c ρ , a ρ = l = 1 , 2 γ l 2 ( 2 σ 3 l ρ σ l 3 σ l 3 σ 3 l ρ ρ σ l 3 σ 3 l ) , c ρ = l = 1 , 2 κ l ( 2 a l ρ a l a l a l ρ ρ a l a l ) ,
H = H a + H c + H I ,
H a = l = 1 , 2 ( Δ l σ l l + Ω l σ l 3 + Ω l * σ 3 l ) , H c = l = 1 , 2 Δ c l δ a l δ a l , H I = l = 1 , 2 g ( δ a l σ l 3 + σ 3 l δ a l ) .
| b = cos β | 1 + sin β | 2 , | d = sin β | 1 + cos β | 2 ,
H a = Ω ( σ b 3 + σ 3 b ) ,
σ d d = 0 .
σ 12 N = 1 4 ,
a b = a 1 cos β + a 2 sin β , a d = a 1 sin β + a 2 cos β ,
H I = g ( δ a b σ b 3 + δ a d σ d 3 ) + H . c . ,
r a x a 1 sin β x a 2 cos β = 2 Re ( a d e i φ ) , ψ a p a 1 sin β p a 2 cos β = 2 Im ( a d e i φ ) ,
( δ r a ) 2 = ( δ ψ a ) 2 = 1 2 .
Re a 1 a 2 = 1 2 sin ( 2 β ) cos [ ( ω c 1 ω c 2 ) t ] a b a b 0 .
H c = Δ c ( a 1 a 1 a 2 a 2 ) ,
( | + | 0 | ) = ( 1 + sin θ 2 1 sin θ 2 cos θ 2 cos θ 2 cos θ 2 sin θ 1 sin θ 2 1 + sin θ 2 cos θ 2 ) ( | 1 | 2 | 3 ) ,
H a = Ω ¯ ( σ + + σ ) .
N 0 = N ( sin 4 θ + sin 2 θ ) 3 sin 4 θ 3 sin 2 θ + 2 , N + = N = 1 2 ( N N 0 ) .
N ± > N 0 for | Δ Ω | < 1 , N 0 > N ± for | Δ Ω | > 1 .
H 0 = H a + H c = Ω ¯ ( σ + + σ ) + Δ c ( a 1 a 1 a 2 a 2 ) .
H I = 1 2 g [ a 1 sin θ ( 1 + sin θ ) + a 2 cos 2 θ ] σ + 0 + 1 2 g [ a 2 sin θ ( 1 + sin θ ) + a 1 cos 2 θ ] σ 0 + H . c . .
b 1 = a 1 cosh r e i ϕ a 2 sinh r , b 2 = a 2 cosh r e i ϕ a 1 sinh r ,
H I = l = 1 , 2 g ˜ ( b l σ l + + σ l b l ) ,
σ 1 , 2 = σ 0 for Δ Ω < 2 3 , σ 1 , 2 = σ 0 ± for Δ Ω > 2 3 .
π 1 = σ 1 cosh r e i ϕ σ 2 + sinh r , π 2 = σ 2 cosh r e i ϕ σ 1 + sinh r ,
H I = l = 1 , 2 g ¯ ( a l π l + π l a l ) .
d α 1 d t = κ α 1 g ¯ v 2 cosh r + g ¯ v 1 sinh r + F α 1 , d α 2 d t = κ α 2 g ¯ v 1 cosh r + g ¯ v 2 sinh r + F α 2 , d v 1 d t = Γ v 1 γ c v 2 + g ¯ α 2 cosh r + g ¯ α 1 sinh r + F v 1 , d v 2 d t = Γ v 2 γ c v 1 + g ¯ α 1 cosh r + g ¯ α 2 sinh r + F v 2 ,
{ δ X α ± 2 , δ X v ± 2 , δ P α ± 2 , δ P v ± 2 } < 1 ,
δ X α ± 2 + δ P α ± 2 < 2 , δ X v ± 2 + δ P v 2 < 2 .
δ X α + 2 = 1 Γ 1 ( 1 e 2 r ) 2 Γ Π e 2 r ( κ + Γ 1 ) ( 1 + C 1 1 ) ,
δ X v 2 = 1 κ ( 1 e 2 r ) 2 Γ Π ( 1 + κ + Γ 2 C 2 Γ 2 ) ( κ + Γ 2 ) ( 1 + C 2 1 ) ,
δ X α ± 2 = δ P α 2 , δ X v ± 2 = δ P v 2 .
δ X α + 2 = δ P α 2 0.06 ,
δ X v + 2 = δ P v 2 0.07 .
J x = σ 12 + σ 21 , J y = i ( σ 12 σ 21 ) , J z = σ 11 σ 22 ,
J y = i sin θ ( σ + σ + ) i cos θ 2 ( σ + 0 σ 0 + + σ 0 σ 0 ) , J z = sin θ ( σ + + σ ) cos θ 2 ( σ + 0 + σ 0 + + σ 0 + σ 0 ) .
δ J y 2 | J x | = δ X v 2 + 2 N + sin 2 θ | J x | , δ J z 2 | J x | = δ X v + 2 + 2 N + sin 2 θ | J x | ,
δ J y 2 | J x | = δ X v 2 + 2 Π ( Δ Ω ) 2 .
H = l = 1 , 2 ( Ω l σ 3 l + σ l 3 Ω l * ) ,
H = Ω ( σ 3 b + σ b 3 ) .
σ d d N = 1 ,
σ 12 N = 1 2 .

Metrics