Abstract

We developed an advanced video extensometer for non-contact, real-time, high-accuracy strain measurement in material testing. In the established video extensometer, a “near perfect and ultra-stable” imaging system, combining the idea of active imaging with a high-quality bilateral telecentric lens, is constructed to acquire high-fidelity video images of the test sample surface, which is invariant to ambient lighting changes and small out-of-plane motions occurred between the object surface and image plane. In addition, an efficient and accurate inverse compositional Gauss-Newton algorithm incorporating a temporal initial guess transfer scheme and a high-accuracy interpolation method is employed to achieve real-time, high-accuracy displacement tracking with negligible bias error. Tensile tests of an aluminum sample and a carbon fiber filament sample were performed to demonstrate the efficiency, repeatability and accuracy of the developed advanced video extensometer. The results indicate that longitudinal and transversal strains can be estimated and plotted at a rate of 117 fps and with a maximum strain error less than 30 microstrains.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-calibration single-lens 3D video extensometer for high-accuracy and real-time strain measurement

Xinxing Shao, Mohammed Mokhtar Eisa, Zhenning Chen, Shuai Dong, and Xiaoyuan He
Opt. Express 24(26) 30124-30138 (2016)

Ultrasensitive video extensometer using single-camera dual field-of-view telecentric imaging system

Bo Dong, Chenzhuo Li, and Bing Pan
Opt. Lett. 44(18) 4499-4502 (2019)

References

  • View by:
  • |
  • |
  • |

  1. ASTM International, “ASTM Standard D2969, Standard Test Techniques for Steel Tire Cords,” in Annual Book of ASTM Standards 07.01, West Conshohocken, PA, (2004).
  2. Y. T. Chen, “Primary discussion on measuring technology in video extensometer,” Eng. Test. B12, 50–53 (2009).
  3. M. Shinoda and R. J. Bathurst, “Strain measurement of geogrids using a video-extensometer technique,” Geotech. Test. J. 27(5), 11940 (2004).
    [Crossref]
  4. Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
    [Crossref]
  5. D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
    [Crossref]
  6. F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).
  7. M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
    [Crossref]
  8. R. Völkl and B. Fischer, “Mechanical testing of ultra-high temperature alloys,” Exp. Mech. 44(2), 121–127 (2004).
    [Crossref]
  9. G. Tao and Z. Xia, “A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method,” Polym. Test. 24(7), 844–855 (2005).
    [Crossref]
  10. B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
    [Crossref]
  11. F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
    [Crossref]
  12. B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
    [Crossref]
  13. B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51(7), 1223–1235 (2011).
    [Crossref]
  14. Z. Chen, X. Zhang, and S. Fatikow, “3D robust digital image correlation for vibration measurement,” Appl. Opt. 55(7), 1641–1648 (2016).
    [Crossref] [PubMed]
  15. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
    [Crossref]
  16. B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49(7), 841–847 (2011).
    [Crossref]
  17. B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
    [Crossref]
  18. B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
    [Crossref]
  19. R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
    [Crossref]
  20. X. Shao, X. Dai, Z. Chen, and X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring,” Appl. Opt. 55(4), 696–704 (2016).
    [Crossref] [PubMed]
  21. B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
    [Crossref]
  22. B. Pan, L. P. Yu, and D. F. Wu, “Accurate ex-situ two-dimensional digital image correlation measurements using an ultra-stable imaging system,” Appl. Opt. 53(19), 4216–4227 (2014).
    [Crossref] [PubMed]
  23. S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56(3), 221–255 (2004).
    [Crossref]
  24. X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
    [Crossref]
  25. B. Pan and B. Wang, “Digital image correlation with enhanced accuracy and efficiency: a comparison of two subpixel registration algorithms,” Exp. Mech. (posted 03 June 2016, in press).
    [Crossref]
  26. B. Pan, “An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm,” Strain 50(1), 48–56 (2014).
    [Crossref]
  27. H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
    [Crossref]
  28. B. Pan, “Bias error reduction of digital image correlation using Gaussian pre-filtering,” Opt. Lasers Eng. 51(10), 1161–1167 (2013).
    [Crossref]
  29. Toray Industries, Inc., “High-performance carbon fiber,” http://www.torayca.com/download/pdf/torayca.pdf#search='T300+TPRAY .
  30. B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
    [Crossref]
  31. M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
    [Crossref]
  32. B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
    [Crossref]
  33. B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
    [Crossref]

2016 (5)

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Z. Chen, X. Zhang, and S. Fatikow, “3D robust digital image correlation for vibration measurement,” Appl. Opt. 55(7), 1641–1648 (2016).
[Crossref] [PubMed]

B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
[Crossref]

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

X. Shao, X. Dai, Z. Chen, and X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring,” Appl. Opt. 55(4), 696–704 (2016).
[Crossref] [PubMed]

2015 (2)

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
[Crossref]

2014 (4)

B. Pan, “An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm,” Strain 50(1), 48–56 (2014).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “Accurate ex-situ two-dimensional digital image correlation measurements using an ultra-stable imaging system,” Appl. Opt. 53(19), 4216–4227 (2014).
[Crossref] [PubMed]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
[Crossref]

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

2013 (4)

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
[Crossref]

B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
[Crossref]

B. Pan, “Bias error reduction of digital image correlation using Gaussian pre-filtering,” Opt. Lasers Eng. 51(10), 1161–1167 (2013).
[Crossref]

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

2011 (3)

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51(7), 1223–1235 (2011).
[Crossref]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49(7), 841–847 (2011).
[Crossref]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

2009 (3)

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
[Crossref]

Y. T. Chen, “Primary discussion on measuring technology in video extensometer,” Eng. Test. B12, 50–53 (2009).

2008 (1)

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

2006 (1)

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

2005 (1)

G. Tao and Z. Xia, “A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method,” Polym. Test. 24(7), 844–855 (2005).
[Crossref]

2004 (4)

R. Völkl and B. Fischer, “Mechanical testing of ultra-high temperature alloys,” Exp. Mech. 44(2), 121–127 (2004).
[Crossref]

M. Shinoda and R. J. Bathurst, “Strain measurement of geogrids using a video-extensometer technique,” Geotech. Test. J. 27(5), 11940 (2004).
[Crossref]

Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
[Crossref]

S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56(3), 221–255 (2004).
[Crossref]

2000 (2)

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
[Crossref]

D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
[Crossref]

Asundi, A.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Bai, P.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Baker, S.

S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56(3), 221–255 (2004).
[Crossref]

Bathurst, R. J.

M. Shinoda and R. J. Bathurst, “Strain measurement of geogrids using a video-extensometer technique,” Geotech. Test. J. 27(5), 11940 (2004).
[Crossref]

Bhattacharyya, A.

M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
[Crossref]

Braasch, J. R.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
[Crossref]

Chen, Y. T.

Y. T. Chen, “Primary discussion on measuring technology in video extensometer,” Eng. Test. B12, 50–53 (2009).

Chen, Z.

Coimbra, D.

D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
[Crossref]

Dai, F. L.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Dai, X.

X. Shao, X. Dai, Z. Chen, and X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring,” Appl. Opt. 55(4), 696–704 (2016).
[Crossref] [PubMed]

X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
[Crossref]

Fatikow, S.

Fischer, B.

R. Völkl and B. Fischer, “Mechanical testing of ultra-high temperature alloys,” Exp. Mech. 44(2), 121–127 (2004).
[Crossref]

Greenwood, R.

D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
[Crossref]

He, X.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

X. Shao, X. Dai, Z. Chen, and X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring,” Appl. Opt. 55(4), 696–704 (2016).
[Crossref] [PubMed]

X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
[Crossref]

Hughes, R. L.

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

Iyengar, R. M.

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

Jenner, F.

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

Jiang, Z.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Kannarpady, G. K.

M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
[Crossref]

Kendall, K.

D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
[Crossref]

Kong, C.

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

Lei, D.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Li, K.

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
[Crossref]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49(7), 841–847 (2011).
[Crossref]

Li, W.

Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
[Crossref]

Matthews, I.

S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56(3), 221–255 (2004).
[Crossref]

Orteu, J. J.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Pan, B.

B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
[Crossref]

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

B. Pan, “An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm,” Strain 50(1), 48–56 (2014).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “Accurate ex-situ two-dimensional digital image correlation measurements using an ultra-stable imaging system,” Appl. Opt. 53(19), 4216–4227 (2014).
[Crossref] [PubMed]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
[Crossref]

B. Pan, “Bias error reduction of digital image correlation using Gaussian pre-filtering,” Opt. Lasers Eng. 51(10), 1161–1167 (2013).
[Crossref]

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
[Crossref]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49(7), 841–847 (2011).
[Crossref]

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51(7), 1223–1235 (2011).
[Crossref]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Qian, K. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Schreier, H. W.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
[Crossref]

Shao, X.

X. Shao, X. Dai, Z. Chen, and X. He, “Real-time 3D digital image correlation method and its application in human pulse monitoring,” Appl. Opt. 55(4), 696–704 (2016).
[Crossref] [PubMed]

X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
[Crossref]

Shen, Z. B.

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

Shi, H.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Shinoda, M.

M. Shinoda and R. J. Bathurst, “Strain measurement of geogrids using a video-extensometer technique,” Geotech. Test. J. 27(5), 11940 (2004).
[Crossref]

Song, X. L.

B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
[Crossref]

Sutton, M. A.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
[Crossref]

Tang, G. J.

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

Tang, L. Q.

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

Tao, G.

G. Tao and Z. Xia, “A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method,” Polym. Test. 24(7), 844–855 (2005).
[Crossref]

Tian, L.

B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
[Crossref]

Tiwari, V.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Tong, W.

B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
[Crossref]

Völkl, R.

R. Völkl and B. Fischer, “Mechanical testing of ultra-high temperature alloys,” Exp. Mech. 44(2), 121–127 (2004).
[Crossref]

Walter, M. E.

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

Wang, Z. Y.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

Wolverton, M.

M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
[Crossref]

Wu, D. F.

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “Accurate ex-situ two-dimensional digital image correlation measurements using an ultra-stable imaging system,” Appl. Opt. 53(19), 4216–4227 (2014).
[Crossref] [PubMed]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
[Crossref]

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

Wu, R.

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

Xia, Y.

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
[Crossref]

Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
[Crossref]

Xia, Z.

G. Tao and Z. Xia, “A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method,” Polym. Test. 24(7), 844–855 (2005).
[Crossref]

Xie, H. M.

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Yan, J. H.

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

Yu, L. P.

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “Accurate ex-situ two-dimensional digital image correlation measurements using an ultra-stable imaging system,” Appl. Opt. 53(19), 4216–4227 (2014).
[Crossref] [PubMed]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
[Crossref]

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

Yuan, J. Y.

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

Zhang, D.

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

Zhang, X.

Zhu, F.

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

Appl. Opt. (3)

Eng. Test. (1)

Y. T. Chen, “Primary discussion on measuring technology in video extensometer,” Eng. Test. B12, 50–53 (2009).

Exp. Mech. (5)

R. Völkl and B. Fischer, “Mechanical testing of ultra-high temperature alloys,” Exp. Mech. 44(2), 121–127 (2004).
[Crossref]

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51(7), 1223–1235 (2011).
[Crossref]

R. Wu, C. Kong, K. Li, and D. Zhang, “Real-time digital image correlation for dynamic strain measurement,” Exp. Mech. 56(5), 833–843 (2016).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: error analysis and experimental verification,” Exp. Mech. 53(9), 1719–1733 (2013).
[Crossref]

B. Pan, K. Li, and W. Tong, “Fast, robust and accurate digital image correlation calculation without redundant computations,” Exp. Mech. 53(7), 1277–1289 (2013).
[Crossref]

Exp. Tech. (1)

M. Wolverton, A. Bhattacharyya, and G. K. Kannarpady, “Efficient, flexible, noncontact deformation measurements using video multi-extensometry,” Exp. Tech. 33(2), 24–33 (2009).
[Crossref]

Geotech. Test. J. (1)

M. Shinoda and R. J. Bathurst, “Strain measurement of geogrids using a video-extensometer technique,” Geotech. Test. J. 27(5), 11940 (2004).
[Crossref]

Int. J. Comput. Vis. (1)

S. Baker and I. Matthews, “Lucas-Kanade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56(3), 221–255 (2004).
[Crossref]

J. Mater. Sci. (1)

D. Coimbra, R. Greenwood, and K. Kendall, “Tensile testing of ceramic fibres by video extensometry,” J. Mater. Sci. 35(13), 3341–3345 (2000).
[Crossref]

J. Strain Anal. Eng. Des. (1)

F. Jenner, M. E. Walter, R. M. Iyengar, and R. L. Hughes, “Application of high-speed video extensometry for high-temperature tensile characterization of boron heat-treated steels,” J. Strain Anal. Eng. Des. 49, 378–387 (2014).

Meas. Sci. Technol. (5)

F. Zhu, P. Bai, H. Shi, Z. Jiang, D. Lei, and X. He, “Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging,” Meas. Sci. Technol. 27(6), 065007 (2016).
[Crossref]

B. Pan, K. M. Qian, H. M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

B. Pan, L. P. Yu, and D. F. Wu, “High-accuracy 2D digital image correlation measurements with low-cost imaging lenses: implementation of a generalized compensation method,” Meas. Sci. Technol. 25(2), 025001 (2014).
[Crossref]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22(1), 015701 (2011).
[Crossref]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

NDT Int. (1)

B. Pan, L. Tian, and X. L. Song, “Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation,” NDT Int. 79, 73–80 (2016).
[Crossref]

Opt. Eng. (1)

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39(11), 2915–2921 (2000).
[Crossref]

Opt. Lasers Eng. (5)

B. Pan, “Bias error reduction of digital image correlation using Gaussian pre-filtering,” Opt. Lasers Eng. 51(10), 1161–1167 (2013).
[Crossref]

X. Shao, X. Dai, and X. He, “Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation,” Opt. Lasers Eng. 71, 9–19 (2015).
[Crossref]

B. Pan, L. P. Yu, D. F. Wu, and L. Q. Tang, “Systematic errors in two-dimensional digital image correlation due to lens distortion,” Opt. Lasers Eng. 51(2), 140–147 (2013).
[Crossref]

M. A. Sutton, J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46(10), 746–757 (2008).
[Crossref]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49(7), 841–847 (2011).
[Crossref]

Polym. Test. (1)

G. Tao and Z. Xia, “A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method,” Polym. Test. 24(7), 844–855 (2005).
[Crossref]

Propell. Explos. Pyrot. (1)

B. Pan, L. P. Yu, J. Y. Yuan, Z. B. Shen, and G. J. Tang, “Determination of viscoelastic Poisson’s ratio of solid propellants using an accuracy-enhanced 2D digital image correlation technique,” Propell. Explos. Pyrot. 40(6), 821–830 (2015).
[Crossref]

Rubber Chem. Technol. (1)

Y. Xia, W. Li, and Y. Xia, “Study on the compressible hyperelastic constitutive model of tire rubber compounds under moderate finite deformation,” Rubber Chem. Technol. 77(2), 230–241 (2004).
[Crossref]

Strain (1)

B. Pan, “An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm,” Strain 50(1), 48–56 (2014).
[Crossref]

Other (3)

ASTM International, “ASTM Standard D2969, Standard Test Techniques for Steel Tire Cords,” in Annual Book of ASTM Standards 07.01, West Conshohocken, PA, (2004).

B. Pan and B. Wang, “Digital image correlation with enhanced accuracy and efficiency: a comparison of two subpixel registration algorithms,” Exp. Mech. (posted 03 June 2016, in press).
[Crossref]

Toray Industries, Inc., “High-performance carbon fiber,” http://www.torayca.com/download/pdf/torayca.pdf#search='T300+TPRAY .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the established advanced video extensometer. (b) the bilateral telecentric lens, and (c) the transmission spectrum of the optical bandpass filter.
Fig. 2
Fig. 2 The four-point mode for measuring longitudinal and transversal strains
Fig. 3
Fig. 3 (a) The established video extensometer, (b) the reference image of the test aluminum sample, and (c) the pre-assigned load-time curve.
Fig. 4
Fig. 4 The computed strains versus time using various interpolation methods. (a) bicubic convolution interpolation, (b) 5 × 5 pixels Gaussian pre-filtering and bicubic convolution interpolation, (c) bicubic B-spline interpolation, and (d) 5 × 5 pixels Gaussian pre-filtering and bicubic B-spline interpolation.
Fig. 5
Fig. 5 Comparison of the strain errors related to four different interpolation methods: (Left) error in εxx, (right) error in εyy.
Fig. 6
Fig. 6 Real-time stress-strain curves of the test carbon fiber multifilament sample measured by the established video extensometer. The inserted two pictures show an image of the specimen and its reference image with specified subsets.

Tables (1)

Tables Icon

Table 1 Comparison between the Experimental Obtained Mechanical Properties and the Reference Values

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε y y = Δ L L = v p1 v p3 L ε x x = Δ D D = u p2 u p4 D
μ = - ε y y ε x x
C ZNSSD ( Δ p ) = ξ { [ f ( x + W ( ξ ; Δ p ) ) f ¯ ] Δ f [ g ( x + W ( ξ ; p ) ) g ¯ ] Δ g } 2
u t =2 u t 1 u t 2 , u x t =2 u x t 1 u x t 2 , u y t =2 u y t 1 u y t 2 v t =2 v t 1 v t 2 , v x t =2 v x t 1 v x t 2 , v y t =2 v y t 1 v y t 2

Metrics