Abstract

Strong temperature dependence of anti-Stokes luminescence intensity from Rhodamine 101 is used to probe local temperature variation at a surface region in the attenuated total reflection geometry (ATR), when heating with laser light. In this method, the measured region can be limited by observing evanescent luminescence. The near-field depth (penetration depth) was changed by the observation angle θout of the evanescent luminescence and the spatial temperature variation was observed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced photoluminescence spectroscopy for thin films using the attenuated total reflection method

Takashi Wakamatsu, Tadaaki Kitami, Tomoaki Maruyama, and Susumu Toyoshima
Appl. Opt. 50(5) 696-700 (2011)

Optical approach to angular displacement measurement based on attenuated total reflection

Fan Chen, Zhuangqi Cao, Qishun Shen, and Yaojun Feng
Appl. Opt. 44(26) 5393-5397 (2005)

Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces

George Zikratov, Fang-Yu Yueh, Jagdish P. Singh, O. Perry Norton, R. Arun Kumar, and Robert L. Cook
Appl. Opt. 38(9) 1467-1475 (1999)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
    [Crossref]
  2. J. Lee and N. Kotov, “Thermometer design at the nanoscale,” Nano Today 2, , “title, 48–51 (2007).
    [Crossref]
  3. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
    [Crossref]
  4. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
    [Crossref] [PubMed]
  5. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
    [Crossref]
  6. X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
    [Crossref] [PubMed]
  7. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
    [Crossref]
  8. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
    [Crossref] [PubMed]
  9. A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
    [Crossref]
  10. R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
    [Crossref]
  11. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
    [Crossref]
  12. G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
    [Crossref] [PubMed]
  13. R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
    [Crossref]
  14. L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
    [Crossref]
  15. K. Oishi and K. Kajikawa, “Plasmonic all-optical bistable device based on nematic liquid crystal,” Opt. Commun. 284, 3445–3448 (2011).
    [Crossref]
  16. Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
    [Crossref]
  17. P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
    [Crossref]
  18. A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
    [Crossref]
  19. M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
    [Crossref]
  20. M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
    [Crossref]
  21. T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
    [Crossref]
  22. D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
    [Crossref] [PubMed]
  23. R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
    [Crossref]
  24. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
    [Crossref] [PubMed]
  25. K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
    [Crossref] [PubMed]
  26. J. Christofferson and A. Shakouri, “Thermoreflectance based thermal microscope,” Rev. Sci. Instrum. 76, 024903 (2005).
    [Crossref]
  27. S. Lefevre and S. Volz, “3ω-scanning thermal microscope,” Rev. Sci. Instrum. 76, 033701 (2005).
    [Crossref]
  28. M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
    [Crossref]
  29. R. K. Jain, “Absorption processes associated with anti‐Stokes fluorescence in rhodamine B solutions,#x0201D; J. Appl. Phys. 44, 3157 (1973).
    [Crossref]
  30. N. Rakov, C. B. de. Araujo, G. B. Rocha, A. M. Simas, P. A. F. Athayde-Filho, and J. Miller, “Reverse saturable absorption and anti-Stokes fluorescence in mesoionic compounds pumped at 532 nm,” Appl. Opt. 40, 1389–1395 (2001).
    [Crossref]
  31. M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
    [Crossref] [PubMed]
  32. L. E. Erickson, “On anti-stokes luminescence from Rhodamine 6G in ethanol solutions,” J. Luminescence 5, 1–13 (1972).
    [Crossref]
  33. T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).
  34. C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
    [Crossref]
  35. A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
    [Crossref]
  36. A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
    [Crossref]
  37. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
    [Crossref]
  38. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
    [Crossref] [PubMed]
  39. J. L. Clark and G. Rumbles, “Laser Cooling in the Condensed Phase by Frequency Up-Conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
    [Crossref] [PubMed]
  40. J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
    [Crossref]
  41. D. Pristinski, E. C. Le Ru, S. Tan, S. Sukhishvili, and H. Du, “Surface-enhanced Raman scattering at a planar dielectric interface beyond critical angle,” Opt. Express 16, 20117–20125 (2008)
    [Crossref] [PubMed]

2014 (4)

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

2011 (5)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[Crossref]

K. Oishi and K. Kajikawa, “Plasmonic all-optical bistable device based on nematic liquid crystal,” Opt. Commun. 284, 3445–3448 (2011).
[Crossref]

M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
[Crossref]

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

2010 (3)

G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
[Crossref] [PubMed]

A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
[Crossref]

M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
[Crossref]

2009 (1)

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

2008 (1)

2007 (5)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

J. Lee and N. Kotov, “Thermometer design at the nanoscale,” Nano Today 2, , “title, 48–51 (2007).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

2006 (4)

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

2005 (3)

J. Christofferson and A. Shakouri, “Thermoreflectance based thermal microscope,” Rev. Sci. Instrum. 76, 024903 (2005).
[Crossref]

S. Lefevre and S. Volz, “3ω-scanning thermal microscope,” Rev. Sci. Instrum. 76, 033701 (2005).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

2001 (2)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
[Crossref] [PubMed]

N. Rakov, C. B. de. Araujo, G. B. Rocha, A. M. Simas, P. A. F. Athayde-Filho, and J. Miller, “Reverse saturable absorption and anti-Stokes fluorescence in mesoionic compounds pumped at 532 nm,” Appl. Opt. 40, 1389–1395 (2001).
[Crossref]

2000 (2)

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

1998 (1)

J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[Crossref]

1996 (2)

J. L. Clark and G. Rumbles, “Laser Cooling in the Condensed Phase by Frequency Up-Conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

1991 (1)

L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
[Crossref]

1989 (1)

R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
[Crossref]

1985 (1)

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

1973 (1)

R. K. Jain, “Absorption processes associated with anti‐Stokes fluorescence in rhodamine B solutions,#x0201D; J. Appl. Phys. 44, 3157 (1973).
[Crossref]

1972 (2)

L. E. Erickson, “On anti-stokes luminescence from Rhodamine 6G in ethanol solutions,” J. Luminescence 5, 1–13 (1972).
[Crossref]

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

Araujo, M. T. d.

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

Ashworth, S. P.

R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
[Crossref]

Athayde-Filho, P. A. F.

Baev, A.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

Baffou, G.

G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
[Crossref] [PubMed]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Bardhan, R.

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

Barthoumi, A.

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

Bloisi, E.

L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
[Crossref]

Borca-Tasciuc, D.-A.

A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
[Crossref]

Braun, P. V.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Cahill, D. G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Chang, M. S.

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

Chen, G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Chou, S. G.

M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
[Crossref]

Christofferson, J.

J. Christofferson and A. Shakouri, “Thermoreflectance based thermal microscope,” Rev. Sci. Instrum. 76, 024903 (2005).
[Crossref]

Clark, J. L.

J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[Crossref]

J. L. Clark and G. Rumbles, “Laser Cooling in the Condensed Phase by Frequency Up-Conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[Crossref] [PubMed]

Clarke, D. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Clarke, M. L.

M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
[Crossref]

Clarke, M. T.

M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
[Crossref]

Cohen, L. F.

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

da Silva, C. J.

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

de. Araujo, C. B.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Du, H.

Edwards, B. C.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Elliott, S. S.

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

El-Sayed, I.

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

El-Sayed, M. A.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

Epstein, R. I.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Erickson, L. E.

L. E. Erickson, “On anti-stokes luminescence from Rhodamine 6G in ethanol solutions,” J. Luminescence 5, 1–13 (1972).
[Crossref]

Etchegoin, P. G.

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

Fan, S.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Feld, M.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

Fisher, T. S.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

Fujimura, R.

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

Gaitan, M.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
[Crossref] [PubMed]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[Crossref]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Goodson, K. E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Gouveia, E. A.

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

Gouveia-Neto, A. S.

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

Govorov, A. O.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Gupta, A.

A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
[Crossref]

Gustafson, T. K.

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

Halas, N. J.

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hasegawa, M.

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

Hu, C.

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

Huang, X.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

Huang, Z.-L.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Huschka, R.

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

Hwang, J.

M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
[Crossref]

Innes, R. A.

R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

J. G. d. Abajo, F.

G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
[Crossref] [PubMed]

Jain, R. K.

R. K. Jain, “Absorption processes associated with anti‐Stokes fluorescence in rhodamine B solutions,#x0201D; J. Appl. Phys. 44, 3157 (1973).
[Crossref]

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Kachynski, A. V.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

Kajikawa, K.

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

K. Oishi and K. Kajikawa, “Plasmonic all-optical bistable device based on nematic liquid crystal,” Opt. Commun. 284, 3445–3448 (2011).
[Crossref]

Kane, R. S.

A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
[Crossref]

Keblinski, P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Khan, A.

M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
[Crossref]

Kho, K. W.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Khomenko, V. S.

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

King, W. P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Kitamoto, Y.

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

Knight, M. W.

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

Kotov, N.

J. Lee and N. Kotov, “Thermometer design at the nanoscale,” Nano Today 2, , “title, 48–51 (2007).
[Crossref]

Kozhan, T. M.

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

Kumazaki, S.

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

Kuzmin, A. N.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

Kuznetsova, V. V.

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

Le Ru, E. C.

Lee, J.

J. Lee and N. Kotov, “Thermometer design at the nanoscale,” Nano Today 2, , “title, 48–51 (2007).
[Crossref]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

Lefevre, S.

S. Lefevre and S. Volz, “3ω-scanning thermal microscope,” Rev. Sci. Instrum. 76, 033701 (2005).
[Crossref]

Lei, Z.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Li, X.-Q.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Liu, T.-C.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Locascio, L. E.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
[Crossref] [PubMed]

Luo, Q.-M.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Mahan, G. D.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Maher, R. C.

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

Majumdar, A.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Maris, H. J.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Miller, J.

Miller, P. F.

J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Oishi, K.

K. Oishi and K. Kajikawa, “Plasmonic all-optical bistable device based on nematic liquid crystal,” Opt. Commun. 284, 3445–3448 (2011).
[Crossref]

Olivo, M.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Phillpot, S. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Pop, E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Prasad, P. N.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Pristinski, D.

Pudavar, H. E.

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

Qian, W.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

Quidant, R.

G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
[Crossref] [PubMed]

Rakov, N.

Reut, T. A.

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

Richardson, H. H.

M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Rocha, G. B.

Ross, D.

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
[Crossref] [PubMed]

Ru, E. C. L.

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

Rumbles, G.

J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[Crossref]

J. L. Clark and G. Rumbles, “Laser Cooling in the Condensed Phase by Frequency Up-Conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[Crossref] [PubMed]

Sambles, J. R.

R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
[Crossref]

Sergeev, I. I.

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Shakouri, A.

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

J. Christofferson and A. Shakouri, “Thermoreflectance based thermal microscope,” Rev. Sci. Instrum. 76, 024903 (2005).
[Crossref]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

Shen, Z. X.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Shi, L.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Shimojo, M.

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

Simas, A. M.

Simoni, F.

L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
[Crossref]

Soo, K. C.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Sukhishvili, S.

Takase, Y.

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

Tan, S.

Terazima, M.

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

Thanh, P. T.

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

Vicari, L.

L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
[Crossref]

Volz, S.

S. Lefevre and S. Volz, “3ω-scanning thermal microscope,” Rev. Sci. Instrum. 76, 033701 (2005).
[Crossref]

Wang, H.-Q.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Wang, J.-H.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

Watt, F.

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Yabuta, M.

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

Yamamoto, K.

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

Yoshida, T.

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

Zhang, R.

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

Zhao, Y.-D.

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

ACS Nano (1)

G. Baffou, R. Quidant, and F. J. G. d. Abajo, “Nanoscale Control of Optical Heating in complex Plasmonic Systems,” ACS Nano 4, 709–716 (2010).
[Crossref] [PubMed]

Anal. Chem. (2)

D. Ross, M. Gaitan, and L. E. Locascio, “Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye,” Anal. Chem. 734117–4123 (2001).
[Crossref] [PubMed]

K. W. Kho, Z. X. Shen, Z. Lei, F. Watt, K. C. Soo, and M. Olivo, “Investigation into a Surface Plasmon Related Hearting Effect in Surface Enhanced Raman Apectroscopy,” Anal. Chem. 79, 8870–8882 (2007).
[Crossref] [PubMed]

Analytica Chimica Acta (1)

T.-C. Liu, Z.-L. Huang, H.-Q. Wang, J.-H. Wang, X.-Q. Li, Y.-D. Zhao, and Q.-M. Luo, “Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe,” Analytica Chimica Acta 559, 120–123 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

C. J. da Silva, M. T. d. Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
[Crossref]

L. Vicari, E. Bloisi, and F. Simoni, “Atudy of Thermally Induced Optical Bistability in a Twisted Nematid Liquid Crystal,” Appl. Phys. B 53, 314–348 (1991).
[Crossref]

Appl. Phys. Express (1)

Y. Takase, P. T. Thanh, R. Fujimura, and K. Kajikawa, “A low-power all-optical bistable device based on a liquid crystal layer embedded in thin gold films,” Appl. Phys. Express 7, 042202 (2014).
[Crossref]

Appl. Phys. Lett. (1)

A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, and P. N. Prasad, “Three-dimensional confocal thermal imaging using anti-Stokes luminescence,” Appl. Phys. Lett. 87, 023901 (2005).
[Crossref]

Appl. Phys. Rev. (1)

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2014).
[Crossref]

Cancer Lett. (1)

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Lett. 239, 129–135 (2006).
[Crossref]

Chem. Phys. Lett. (1)

A. Barthoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Lighe-induced release of DNA from plasmon-resonat nanoparticles: Towards light-dontrolled gene therapy,” Chem. Phys. Lett. 482, 171–179 (2009).
[Crossref]

Fraday Discuss. (1)

R. C. Maher, L. F. Cohen, E. C. L. Ru, and P. G. Etchegoin, “A Study of local heating of molecules under Surface Enhanced Raman Scattering (SERS) conditions using the anti-Stokes/Stokes ratio,” Fraday Discuss. 132, 77–83 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

M. S. Chang, S. S. Elliott, T. K. Gustafson, C. Hu, and R. K. Jain, “Observation of Anti-Stokes Fluorescence in Organic Dye Solutions,” IEEE J. Quantum Electron. 8, 527–528 (1972).
[Crossref]

J. Am. Chem. Soc. (1)

X. Huang, I. El-Sayed, W. Qian, and M. A. El-sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (3)

R. K. Jain, “Absorption processes associated with anti‐Stokes fluorescence in rhodamine B solutions,#x0201D; J. Appl. Phys. 44, 3157 (1973).
[Crossref]

A. N. Kuzmin, A. Baev, A. V. Kachynski, T. S. Fisher, A. Shakouri, and P. N. Prasad, “Anti-Stokes fluorescence imaging of microscale thermal fields in thin films,” J. Appl. Phys. 110, 033512 (2011).
[Crossref]

A. Gupta, R. S. Kane, and D.-A. Borca-Tasciuc, “Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles,” J. Appl. Phys. 108, 064901 (2010).
[Crossref]

J. Luminescence (1)

L. E. Erickson, “On anti-stokes luminescence from Rhodamine 6G in ethanol solutions,” J. Luminescence 5, 1–13 (1972).
[Crossref]

J. Phys. Chem. A (1)

J. L. Clark, P. F. Miller, and G. Rumbles, “Rhodamine 101 and the Observation of Laser Cooling in the Condensed Phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
[Crossref]

J. Phys. Chem. B (1)

M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki, “Anti-Stokes fluorescence spectra of chloroplasts in Parachlorella kessleri and maize at room temperature as characterized by near-infrared continuous-wave laser fluorescence microscopy and absorption microscopy,” J. Phys. Chem. B 115, 4184–4194 (2011).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

M. L. Clarke, S. G. Chou, and J. Hwang, “Monitoring Photothermally Excited Nanoparticles via Multimodal Microscopy,” J. Phys. Chem. Lett. 1, 1743–1748 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (2011).
[Crossref]

Jpn. J. Appl. Phys. (2)

R. Fujimura, R. Zhang, Y. Kitamoto, M. Shimojo, and K. Kajikawa, “Modeling of semi-shell nanostructures formed by metal deposition on dielectric nanospheres and numerical evaluation of plasmonic properties,” Jpn. J. Appl. Phys. 53, 035201 (2014).
[Crossref]

P. T. Thanh, K. Yamamoto, R. Fujimura, and K. Kajikawa, “All optical bistability device with counterclockwise hysteresis using twisted nematic liquid crystals on metal-insulator-metal structure,” Jpn. J. Appl. Phys. 53, 092202 (2014).
[Crossref]

Laser in Surgery and Madicine (1)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The Potential Use of the Enhanced Nanolinear Properties of Gold Nanosheres in Photothermal Cancer Therapy,” Laser in Surgery and Madicine 39, 747–753 (2007).
[Crossref]

Nano Lett. (2)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy,” Nano Lett. 7, 1929–1934 (2007).
[Crossref] [PubMed]

M. T. Clarke, A. Khan, and H. H. Richardson, “Local temperature determination of optically excited nanoparticles and nanodots,” Nano Lett. 11, 1061–1069 (2011).
[Crossref]

Nano Today (2)

J. Lee and N. Kotov, “Thermometer design at the nanoscale,” Nano Today 2, , “title, 48–51 (2007).
[Crossref]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[Crossref]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observaton of laser-induced fluorescent cooling of a sold,” Nature 377, 500–503 (1995).
[Crossref]

Opt. Commun. (1)

K. Oishi and K. Kajikawa, “Plasmonic all-optical bistable device based on nematic liquid crystal,” Opt. Commun. 284, 3445–3448 (2011).
[Crossref]

Opt. Express (1)

Phys. Lett. A (1)

R. A. Innes, S. P. Ashworth, and J. R. Sambles, “Large Optical Bistability in a Nematic Liquid Crystal Using Surface Plasmon-Polaritons,” Phys. Lett. A 135, 357–363 (1989).
[Crossref]

Phys. Rev. Lett. (3)

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering,” Phys. Rev. Lett. 76, 2444–2447 (1996).
[Crossref] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
[Crossref] [PubMed]

J. L. Clark and G. Rumbles, “Laser Cooling in the Condensed Phase by Frequency Up-Conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
[Crossref] [PubMed]

Proc Natl Acad Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc Natl Acad Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

J. Christofferson and A. Shakouri, “Thermoreflectance based thermal microscope,” Rev. Sci. Instrum. 76, 024903 (2005).
[Crossref]

S. Lefevre and S. Volz, “3ω-scanning thermal microscope,” Rev. Sci. Instrum. 76, 033701 (2005).
[Crossref]

Zhurnal Prikladnoi Spektroskopii (1)

T. M. Kozhan, V. V. Kuznetsova, T. A. Reut, I. I. Sergeev, and V. S. Khomenko, “Temperature Dependence of the AntiStokes Luminescence of Holmium in Yttrium Fluoride,” Zhurnal Prikladnoi Spektroskopii 46, 423–427 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical setup for the local temperature variation measurement.
Fig. 2
Fig. 2 (a) Luminescence spectra measured for an ethanol solution of Rh101 at a concentration of 1 mM at various temperatures. (b) Anti-Stokes luminescence intensity as a function of temperature.
Fig. 3
Fig. 3 (a) Anti-Stokes luminescence intensity as a function of θout. (b) Optical geometry to calculate the observed region of the propagation luminescence (PL) and (c) that of evanescent luminescence (EL). θ2,c is the inner critical angle.
Fig. 4
Fig. 4 The rate of increase in anti-Stokes luminescence intensity η as a function of (a) radiation angle θout and (b) the near-field depth dNF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d NF = 1 k 0 1 2 ( n 2 2 sin 2 θ 2 n 1 2 ) 1 / 2

Metrics