Abstract

The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (XZ) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-speckle-contrast projection tomography for three-dimensional shear wave imaging

Pei-Yu Chao and Pai-Chi Li
Opt. Lett. 44(19) 4809-4812 (2019)

Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry

Yi Cheng, Sinan Li, Robert J. Eckersley, Daniel S. Elson, and Meng-Xing Tang
Biomed. Opt. Express 6(1) 63-71 (2015)

Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms

Marjan Razani, Adrian Mariampillai, Cuiru Sun, Timothy W. H. Luk, Victor X. D. Yang, and Michael C. Kolios
Biomed. Opt. Express 3(5) 972-980 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
    [Crossref] [PubMed]
  2. K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
    [Crossref] [PubMed]
  3. K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
    [PubMed]
  4. A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
    [Crossref] [PubMed]
  5. L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
    [Crossref] [PubMed]
  6. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
    [Crossref] [PubMed]
  7. K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
    [Crossref] [PubMed]
  8. J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
    [Crossref] [PubMed]
  9. M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
    [Crossref] [PubMed]
  10. T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
    [Crossref] [PubMed]
  11. H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Robust shear wave speed measurement using comb-push ultrasound radiation force,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE 2011), pp. 1270–1273.
    [Crossref]
  12. M. Razani, T. W. H. Luk, A. Mariampillai, P. Siegler, T. R. Kiehl, M. C. Kolios, and V. X. D. Yang, “Optical coherence tomography detection of shear wave propagation in inhomogeneous tissue equivalent phantoms and ex-vivo carotid artery samples,” Biomed. Opt. Express 5(3), 895–906 (2014).
    [Crossref] [PubMed]
  13. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
    [Crossref] [PubMed]
  14. A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
    [Crossref] [PubMed]
  15. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
    [Crossref] [PubMed]
  16. E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
    [Crossref]
  17. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  18. Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
    [Crossref] [PubMed]
  19. L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2004).
    [Crossref] [PubMed]
  20. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
    [Crossref] [PubMed]
  21. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
    [Crossref] [PubMed]
  22. K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
    [Crossref]
  23. P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
    [Crossref] [PubMed]

2015 (1)

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
[Crossref] [PubMed]

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

2009 (1)

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

2008 (2)

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33(24), 2886–2888 (2008).
[Crossref] [PubMed]

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

2007 (1)

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

2006 (2)

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

2004 (1)

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2004).
[Crossref] [PubMed]

2003 (2)

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[Crossref] [PubMed]

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

2002 (2)

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[Crossref] [PubMed]

1998 (1)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Aglyamov, S. R.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Alam, S. K.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Beaugrand, M.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Bentley, R.

K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Boccara, A.-C.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Bossy, E.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Byram, B.

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

Castaneda, B.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Chassot, J. M.

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Chen, Y. C.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Cheng, Y.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Christidis, C.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Claude Boccara, A.

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Daoudi, K.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Deffieux, T.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

di Sant’agnese, P. A.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Dunsby, C.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Eckersley, R. J.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Elson, D. S.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Fink, M.

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Fournier, C.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Fourquet, B.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Funke, A. R.

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Garra, B. S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Gennisson, J. L.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

Gennisson, J.-L.

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

Hasquenoph, J. M.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Hoyt, K.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Imbault, M.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

Itoh, A.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Joseph, J. V.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Kallel, F.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Kamma, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Kazemi, F.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Kiehl, T. R.

Kirkpatrick, S. J.

Kolios, M. C.

Konofagou, E. E.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Larin, K. V.

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Larrat, B.

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

Li, J.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Li, R.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Li, S.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Lu, P.

P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
[Crossref] [PubMed]

Luk, T. W. H.

Mal, F.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Manapuram, R. K.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Mariampillai, A.

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Matsumura, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

McAleavey, S.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[Crossref] [PubMed]

Merritt, C. R. B.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Moffitt, T.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

Nahas, A.

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Nguyen, T. M.

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

Nightingale, K.

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[Crossref] [PubMed]

K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[Crossref] [PubMed]

Nigwekar, P.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Palau, R.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Palmeri, M.

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

Papadacci, C.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

Parker, K. J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Pernot, M.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

Poulet, B.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Prahl, S. A.

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

Provost, J.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

Razani, M.

Righetti, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Rouze, N.

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

Rubens, D. J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Sandrin, L.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Shiina, T.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Siegler, P.

Souchon, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Srinivasan, S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Strang, J.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

Takahashi, H.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Tang, M. X.

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Tanter, M.

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

Tohno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Trahey, G.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[Crossref] [PubMed]

K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[Crossref] [PubMed]

Ueno, E.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Wang, L. V.

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2004).
[Crossref] [PubMed]

Wang, M.

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

Wang, S.

Weaver, V. M.

P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
[Crossref] [PubMed]

Wells-Gray, E. M.

Werb, Z.

P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
[Crossref] [PubMed]

Yamakawa, M.

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Yang, V. X. D.

Yon, S.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Zhang, M.

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Ziol, M.

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

E. Bossy, A. R. Funke, K. Daoudi, A.-C. Boccara, M. Tanter, and M. Fink, “Transient optoelastography in optically diffusive media,” Appl. Phys. Lett. 90(17), 174111 (2007).
[Crossref]

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[Crossref]

Biomed. Opt. Express (1)

Cancer Biomark. (1)

K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomark. 4(4-5), 213–225 (2008).
[PubMed]

Dis. Markers (1)

L. V. Wang, “Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography,” Dis. Markers 19(2-3), 123–138 (2004).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, “Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-D matrix ultrasound array,” IEEE Trans. Med. Imaging 32(9), 1671–1684 (2013).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

T. Deffieux, J.-L. Gennisson, B. Larrat, M. Fink, and M. Tanter, “The variance of quantitative estimates in shear wave imaging: theory and experiments,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(11), 2390–2410 (2012).
[Crossref] [PubMed]

J. L. Gennisson, J. Provost, T. Deffieux, C. Papadacci, M. Imbault, M. Pernot, and M. Tanter, “4-D ultrafast shear-wave imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(6), 1059–1065 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt. 11(4), 041103 (2006).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” J. Biomed. Opt. 17(10), 1005011 (2012).
[Crossref] [PubMed]

A. Nahas, M. Tanter, T. M. Nguyen, J. M. Chassot, M. Fink, and A. Claude Boccara, “From supersonic shear wave imaging to full-field optical coherence shear wave elastography,” J. Biomed. Opt. 18(12), 121514 (2013).
[Crossref] [PubMed]

J. Cell Biol. (1)

P. Lu, V. M. Weaver, and Z. Werb, “The extracellular matrix: a dynamic niche in cancer progression,” J. Cell Biol. 196(4), 395–406 (2012).
[Crossref] [PubMed]

J. Med. Ultrason. (2001) (1)

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrason. (2001) 29(4), 155–171 (2002).
[Crossref] [PubMed]

Opt. Lett. (2)

Radiology (1)

A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Yamakawa, and T. Matsumura, “Breast disease: clinical application of US elastography for diagnosis,” Radiology 239(2), 341–350 (2006).
[Crossref] [PubMed]

Ultrason. Imaging (1)

K. Nightingale, R. Bentley, and G. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging 24(3), 129–138 (2002).
[Crossref] [PubMed]

Ultrasound Med. Biol. (4)

L. Sandrin, B. Fourquet, J. M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi, M. Beaugrand, and R. Palau, “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound Med. Biol. 29(12), 1705–1713 (2003).
[Crossref] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol. 24(9), 1419–1435 (1998).
[Crossref] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol. 29(12), 1715–1723 (2003).
[Crossref] [PubMed]

Y. Cheng, R. Li, S. Li, C. Dunsby, R. J. Eckersley, D. S. Elson, and M. X. Tang, “Shear wave elasticity imaging based on acoustic radiation force and optical detection,” Ultrasound Med. Biol. 38(9), 1637–1645 (2012).
[Crossref] [PubMed]

Other (1)

H. Zhao, P. Song, M. W. Urban, J. F. Greenleaf, and S. Chen, “Robust shear wave speed measurement using comb-push ultrasound radiation force,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE 2011), pp. 1270–1273.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 System setup (BE: beam expander, US: ultrasound push transducer, M: magnification).
Fig. 2
Fig. 2 Illustrations of (a) the acquisition process (striped block: trigger for the camera, solid block: trigger for the push transducer) and (b) the imaging process.
Fig. 3
Fig. 3 Schematics of three heterogeneous phantoms containing a stiff-plate inclusion in the (a) X direction and (b) Y direction, and a stiff-cylinder inclusion (c).
Fig. 4
Fig. 4 Temporal series of speckle contrast difference maps showing (a) the background noise and (b)–(d) the propagation of the shear wave at 0.3 ms, 1.3 ms, and 2.3 ms, respectively, after applying the acoustic radiation force. Aperture size = 15 mm.
Fig. 5
Fig. 5 Spatiotemporal maps for phantoms made with (a) 0.4%, (b) 0.5%, (c) 0.6%, and (d) 0.7% agarose. The black dashed lines indicate the wavefront slope. Aperture size = 15 mm.
Fig. 6
Fig. 6 (a) Spatial mean and (b) spatial standard deviation values of the shear wave velocity map for the homogeneous phantom experiments. The error bars are the standard deviations for five acquisition sessions. Aperture size = 5mm.
Fig. 7
Fig. 7 (a)(c) Camera images and (b)(d) shear wave velocity maps for the heterogeneous phantom with a stiff-plate inclusion in the X direction captured with (a)(b) aperture size = 15 mm and (c)(d) aperture size = 6mm. The yellow dashed box indicates the region where the stiff-plate inclusion is located.
Fig. 8
Fig. 8 Spatial mean values of the shear wave velocity map for the heterogeneous phantom with a stiff-plate inclusion the in Y direction. The error bars are the standard deviations for three acquisition sessions.
Fig. 9
Fig. 9 (a)–(t) Shear wave velocity maps (for the X–Z view) of the heterogeneous phantom with a stiff-cylinder inclusion for scans at Y positions of 1.5 mm to 6.25 mm, in steps of 0.25 mm, respectively.

Tables (2)

Tables Icon

Table 1 Shear Wave Velocity Estimated Using LSCI and the Aixplorer System

Tables Icon

Table 2 Shear Wave Velocities Estimated for Different Regions of the Heterogeneous Phantom with a Stiff-plate Inclusion in the X Direction

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

SS=2.44λ(1+M)F
K= σ s I
ΔK= K us on K us off

Metrics