Abstract

Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about −96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than −98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin
Opt. Express 17(21) 18596-18605 (2009)

Low-phase-noise microwave generation using dual-mode microsquare laser phase locking by modulated sidebands

Jun-Yuan Han, Yong-Zhen Huang, You-Zeng Hao, Ji-Liang Wu, Fu-Li Wang, Yue-De Yang, and Jin-Long Xiao
Opt. Lett. 43(17) 4069-4072 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
    [Crossref]
  3. Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
    [Crossref]
  4. H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
    [Crossref]
  5. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
    [Crossref]
  6. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
    [Crossref]
  7. P. T. Shih, J. Chen, C. T. Lin, W. J. Jiang, H. S. Huang, P. C. Peng, and S. Chi, “Optical millimeter-wave signal generation via frequency 12-Tupling,” J. Lightwave Technol. 28(1), 71–78 (2010).
    [Crossref]
  8. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  9. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  10. G. Chen, D. Huang, X. Zhang, and H. Cao, “Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber,” Opt. Lett. 33(6), 554–556 (2008).
    [Crossref] [PubMed]
  11. B. Pan, D. Lu, Y. Sun, L. Yu, L. Zhang, and L. Zhao, “Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser,” Opt. Lett. 39(22), 6395–6398 (2014).
    [Crossref] [PubMed]
  12. G. Carpintero, K. Balakier, Z. Yang, R. C. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chitoui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Microwave photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. 32(20), 3495–3501 (2014).
    [Crossref]
  13. U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
    [Crossref]
  14. K. Balakier, M. J. Fice, F. van Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
    [Crossref] [PubMed]
  15. C. Walton, A. C. Bordonalli, and A. J. Seeds, “High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 10(3), 427–429 (1998).
    [Crossref]
  16. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
    [Crossref]
  17. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
    [Crossref]
  18. S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
    [Crossref]
  19. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  20. Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
    [Crossref]
  21. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
    [Crossref] [PubMed]
  22. T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
    [Crossref]
  23. C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
    [Crossref] [PubMed]
  24. C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
    [Crossref]
  25. S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
    [Crossref]
  26. X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
    [Crossref] [PubMed]
  27. J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
    [Crossref] [PubMed]
  28. T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
    [Crossref]
  29. K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22(15), 18648–18661 (2014).
    [Crossref] [PubMed]
  30. J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
    [Crossref] [PubMed]
  31. Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
    [Crossref] [PubMed]
  32. S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
    [Crossref]
  33. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE 6468, 646811 (2007).
    [Crossref]
  34. L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
    [Crossref]
  35. J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
    [Crossref]

2015 (3)

2014 (5)

2013 (4)

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

2012 (2)

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
[Crossref] [PubMed]

C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

2011 (2)

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

2010 (2)

2009 (2)

2008 (1)

2007 (2)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE 6468, 646811 (2007).
[Crossref]

2005 (1)

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[Crossref]

2004 (3)

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1999 (1)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

1998 (1)

C. Walton, A. C. Bordonalli, and A. J. Seeds, “High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 10(3), 427–429 (1998).
[Crossref]

1997 (2)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

1994 (1)

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

1992 (2)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

Almulla, M.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Backbom, L.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Balakier, K.

Bente, E. A. J. M.

Bordonalli, A. C.

C. Walton, A. C. Bordonalli, and A. J. Seeds, “High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 10(3), 427–429 (1998).
[Crossref]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Cao, H.

Carpintero, G.

Chan, S. C.

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization,” Opt. Lett. 38(3), 344–346 (2013).
[Crossref] [PubMed]

C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

C. Cui, X. Fu, and S. C. Chan, “Double-locked semiconductor laser for radio-over-fiber uplink transmission,” Opt. Lett. 34(24), 3821–3823 (2009).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE 6468, 646811 (2007).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

Chen, G.

Chen, J.

Chen, J. J.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Chi, S.

Chitoui, M.

Choi, W. Y.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Corradi, A.

Cui, C.

Cui, C. C.

C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

Deng, T.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Doft, F.

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

Donati, S.

Dong, J. J.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Fan, L.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Fice, M. J.

Fu, X.

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Guzman, R. C.

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Huang, D.

Huang, H. S.

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

Huang, Y. Z.

Hung, Y. H.

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

Hwang, S. K.

Jiang, F.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Jiang, W. J.

Jimenez, A.

Kervella, G.

Kjebon, O.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Lamponi, M.

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Lester, L. F.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

Lin, C. T.

Lin, F. Y.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Lintz Christensen, E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Liu, B. W.

Liu, J. M.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE 6468, 646811 (2007).
[Crossref]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Lo, K. H.

Long, H.

Lourdudoss, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Lu, D.

Ma, X. W.

Maleki, L.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

Mao, S.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Nilsson, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

Pan, B.

Pan, S.

Peng, P. C.

Penty, R. V.

Qi, X. Q.

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

Quirce, A.

Renaud, C. C.

Ryu, H. S.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Schatz, R.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Seeds, A. J.

Seo, Y. K.

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

Shih, P. T.

Simpson, T. B.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

Stalnacke, B.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Stubkjaer, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Sun, Y.

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

Tang, X.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Usechak, N. G.

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

Valle, A.

van Dijk, F.

Walton, C.

C. Walton, A. C. Bordonalli, and A. J. Seeds, “High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 10(3), 427–429 (1998).
[Crossref]

Weng, H. Z.

White, I. H.

White, J. K.

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

Wonfor, A.

Wu, J. G.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Wu, Z. M.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Xia, G. Q.

L. Fan, Z. M. Wu, T. Deng, J. G. Wu, X. Tang, J. J. Chen, S. Mao, and G. Q. Xia, “Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser,” J. Lightwave Technol. 32(23), 4660–4666 (2014).
[Crossref]

Xiao, J. L.

Yang, Y. D.

Yang, Z.

Yao, J.

Yao, J. P.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

Yu, L.

Yu, Y.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Yuan, Y. S.

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

Zhang, L.

Zhang, X.

Zhang, X. L.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Zhao, L.

Zhuang, J. P.

Zou, L. X.

Electron. Lett. (2)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimetre wave signals,” Electron. Lett. 28(25), 2309–2311 (1992).
[Crossref]

IEEE J. Quantum Electron. (4)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

C. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48(4), 490–499 (2012).
[Crossref]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41(9), 1142–1147 (2005).
[Crossref]

J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron. 30(4), 957–965 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

T. B. Simpson, J. M. Liu, M. Almulla, N. G. Usechak, and V. Kovanis, “Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500807 (2013).
[Crossref]

S. C. Chan and J. M. Liu, “Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1025–1032 (2004).
[Crossref]

X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1198–1211 (2011).
[Crossref]

S. K. Hwang, J. M. Liu, and J. K. White, “Characteristics of period-one oscillations in semiconductor lasers subject to optical injection,” IEEE J. Sel. Top. Quantum Electron. 10(5), 974–981 (2004).
[Crossref]

IEEE Photonics J. (2)

Y. S. Yuan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photonics J. 3(4), 644–650 (2011).
[Crossref]

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Generation of tunable millimeter-wave and THz signals with an optically injected quantum dot distributed feedback laser,” IEEE Photonics J. 5(4), 765–771 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (5)

T. B. Simpson and F. Doft, “Double-locked laser diode for microwave photonics applications,” IEEE Photonics Technol. Lett. 11(11), 1476–1478 (1999).
[Crossref]

C. Walton, A. C. Bordonalli, and A. J. Seeds, “High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,” IEEE Photonics Technol. Lett. 10(3), 427–429 (1998).
[Crossref]

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonics Technol. Lett. 4(8), 936–938 (1992).
[Crossref]

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

H. S. Ryu, Y. K. Seo, and W. Y. Choi, “Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode,” IEEE Photonics Technol. Lett. 16(8), 1942–1944 (2004).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (7)

K. H. Lo, S. K. Hwang, and S. Donati, “Optical feedback stabilization of photonic microwave generation using period-one nonlinear dynamics of semiconductor lasers,” Opt. Express 22(15), 18648–18661 (2014).
[Crossref] [PubMed]

J. P. Zhuang and S. C. Chan, “Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,” Opt. Express 23(3), 2777–2797 (2015).
[Crossref] [PubMed]

Y. H. Hung and S. K. Hwang, “Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking,” Opt. Express 23(5), 6520–6532 (2015).
[Crossref] [PubMed]

A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20(12), 13390–13401 (2012).
[Crossref] [PubMed]

X. W. Ma, Y. Z. Huang, L. X. Zou, B. W. Liu, H. Long, H. Z. Weng, Y. D. Yang, and J. L. Xiao, “Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback,” Opt. Express 23(16), 20321–20331 (2015).
[Crossref] [PubMed]

K. Balakier, M. J. Fice, F. van Dijk, G. Kervella, G. Carpintero, A. J. Seeds, and C. C. Renaud, “Optical injection locking of monolithically integrated photonic source for generation of high purity signals above 100 GHz,” Opt. Express 22(24), 29404–29412 (2014).
[Crossref] [PubMed]

S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (1)

S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber transmission from an optically injected semiconductor laser in period-one state,” Proc. SPIE 6468, 646811 (2007).
[Crossref]

Quantum Semiclass. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9(9), 765–784 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the experimental setup. ML: master laser; SL: slave laser; EDFA: erbium doped fiber amplifier; PC: polarization controller; VA: variable attenuator; FC: fiber coupler; PM: power meter; OC: optical circulator; PD: photodetector; OSA: optical spectrum analyzer; ESA: electrical spectrum analyzer; MFS: microwave frequency synthesizer.
Fig. 2
Fig. 2 (a) Experimentally measured power-current curve of the free-running SL; (b) dependence of the relaxation resonance frequency of the free-running SL on the bias current; (c) dependence of the relaxation resonance frequency of the free-running SL on the square-root of the laser output power. In (b) and (c), the open circles represent the measured values and the solid lines are the fitted lines.
Fig. 3
Fig. 3 Optical spectra (left column), power spectra (middle column), and detailed power spectra centered at P1 frequency f0 with a resolution bandwidth (RBW) of 100 kHz (right column) of the SL under only optical injection with two different injection parameters (Pi, fi) of (0.61 mW, 36.16 GHz) and (0.63 mW, 39.41 GHz), respectively. The red curves are for the noise floor of the measurement apparatus.
Fig. 4
Fig. 4 Optical spectra (left column) and power spectra (right column) of the SL under a RBW of 3 MHz, where (a) under optical injection and current modulation with (fm, Pm) = (15.32 GHz, 20.00 dBm); (b) under only current modulation with (fm, Pm) = (15.32 GHz, 20.00 dBm). The red lines denote the noise floor.
Fig. 5
Fig. 5 Power spectrum (a) and SSB phase noise (b) centered at 61.28 GHz under a RBW of 1 kHz.
Fig. 6
Fig. 6 Dependence of the modulation power Pm required for locking on the modulation frequency fm with 1/4 subharmonic modulation.
Fig. 7
Fig. 7 SSB phase noise at 10 kHz offset frequency as a function of modulation frequency fm for the generated 4fm microwave signals.
Fig. 8
Fig. 8 Optical spectra (left column) and power spectra (right column) of the SL under a RBW of 3 MHz, where (a) under optical injection and current modulation with (fm, Pm) = (7.23 GHz, 13.00 dBm); (b) under only current modulation with (fm, Pm) = (7.23 GHz, 13.00 dBm). The red lines denote the noise floor.
Fig. 9
Fig. 9 Power spectrum (a) and SSB phase noise (b) centered at 65.07 GHz under a RBW of 1 kHz.
Fig. 10
Fig. 10 Phase noise variance as a function of (a) modulation power Pm with fm = 7.23 GHz and (b) modulation frequency fm with Pm = 13.00 dBm for 1/9 subharmonic modulation.
Fig. 11
Fig. 11 Dependence of the modulation power Pm required for locking on the modulation frequency fm with 1/9 subharmonic modulation.
Fig. 12
Fig. 12 SSB phase noise at 10 kHz offset frequency as a function of modulation frequency fm for the generation of 9fm microwave signals.

Metrics