Abstract

We propose an optically controlled reconfigurable hybrid metamaterial waveguide system at terahertz frequencies, which consists of a two dimensional gold cut wire array deposited on top of a dielectric slab waveguide. Numerical findings reveal that this device is able to realize dynamic transformation from double electromagnetically induced transparency like material to ultra-narrow band guided mode resonance (GMR) filter by controlling the optically excited free carriers in gallium arsenide pads inserted between the gold cut wires. During this reconfiguration process of resonance modes, high quality factors up to ~104 and ~118 for the two EIT-like peaks and up to ~578 for the GMR filter are obtained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system

Pei Ding, Jinna He, Junqiao Wang, Chunzhen Fan, and Erjun Liang
Appl. Opt. 54(12) 3708-3714 (2015)

Controlling the interaction between plasmon-induced transparency and guided mode resonance

Xiaolei Zhao, Cai Yuan, Yeyu Zhu, Xiangfeng Chen, and Lin Zhu
Opt. Express 25(24) 30043-30050 (2017)

Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial

Zhenyu Zhao, Zhiqiang Song, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 6(7) 2190-2200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  2. V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
    [Crossref] [PubMed]
  3. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28(12), A38–A44 (2011).
    [Crossref]
  4. W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
    [Crossref] [PubMed]
  5. I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
    [Crossref]
  6. R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref] [PubMed]
  7. C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
    [Crossref]
  8. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
    [Crossref] [PubMed]
  9. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
    [Crossref]
  10. J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
    [Crossref]
  11. L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
    [Crossref] [PubMed]
  12. X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
    [Crossref]
  13. X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
    [Crossref]
  14. S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
    [Crossref]
  15. J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).
  16. K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
    [Crossref]
  17. W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
    [Crossref]
  18. L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
    [Crossref]
  19. J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
    [Crossref] [PubMed]
  20. J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
    [Crossref] [PubMed]
  21. R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
    [Crossref]
  22. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  23. S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
    [Crossref]
  24. J. F. O’hara, R. Averitt, W. Padilla, and H.-T. Chen, “Dynamic frequency tuning of electric and magnetic metamaterial response,” U.S. Patent No. 8,836,439. 16. (2014).
  25. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
    [Crossref]
  26. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
    [Crossref] [PubMed]
  27. X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
    [Crossref]
  28. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  29. W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
    [Crossref]

2016 (2)

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

2015 (1)

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

2013 (4)

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

2012 (4)

L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4502 (2012).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

2011 (4)

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28(12), A38–A44 (2011).
[Crossref]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

2009 (4)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

2005 (1)

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

2003 (1)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

2002 (1)

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

1998 (1)

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

1993 (1)

1990 (1)

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

1987 (1)

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Acosta, V. M.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Ahrenkiel, R. K.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Al-Jassim, M. M.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Al-Naib, I.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Al-Naib, I. A. I.

Arscott, S.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Bai, W.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Beausoleil, R. G.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bettiol, A. A.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Boland, J. L.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Boyd, R. W.

Budker, D.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Cai, L.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Callan, J. P.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

Cao, W.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Casadei, A.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Chahal, P. P.

J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Childs, W. R.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Chuwongin, S.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Coutaz, J.-L.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Damen, T. C.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Davies, C. L.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Deveaud, B.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Dignam, M. M.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Ding, C.

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

Dixon, T. M.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Dunlavy, D.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Duvillaret, L.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Feng, T.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Fontcuberta I Morral, A.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Fu, J.-H.

Gan, Q.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Garet, F.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Geng, Z.

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Gippius, N.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Glezer, E. N.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

Gossard, A. C.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Han, J.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, M.

He, X.

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Hejase, J. A.

J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).

Herz, L. M.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Ho, J. C.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Hua, J.

Huang, L.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

Hui, A.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Ishihara, T.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Jabeen, F.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Jensen, K.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Jiang, J.

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Johnston, M. B.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Jones, K. M.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Joyce, H. J.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Keyes, B.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Koch, M.

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Lederer, F.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Lee, K. J.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Li, J.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Li, Y.

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

Liang, Z.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Lippens, D.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Lugli, P.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Ma, Z.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Magnusson, R.

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Matteini, F.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Mazur, E.

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

Meitl, M. A.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Menard, E.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Meng, F.-Y.

Motala, M. J.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Mounaix, P.

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

Muljarov, E.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Nuzzo, R. G.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Paladhi, P. R.

J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Santori, C.

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Seo, J. H.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Shah, J.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Shim, A. K.

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Shuai, Y. C.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Singh, R.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Song, G.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Sun, X.

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Tian, X.

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Tonouchi, M.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Tsang, W. T.

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

Tütüncüoglu, G.

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Vernon, S. M.

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

Wang, J.

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Wang, S. S.

Wu, L.

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

Wu, Q.

Xu, D.

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

Xu, Y.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Yablonskii, A.

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

Yang, W.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Yang, Y.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

Yao, J.

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

Yin, X.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yip, S.

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Yong, S.

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, C.

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

Zhang, J.

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhang, W.

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. Cao, R. Singh, I. A. I. Al-Naib, M. He, A. J. Taylor, and W. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37(16), 3366–3368 (2012).
[Crossref] [PubMed]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref] [PubMed]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

Zhao, D.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Zhou, W.

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Zhu, L.

Zhu, X.

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

Zhuang, Z.

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

ACS Nano (1)

J. L. Boland, A. Casadei, G. Tütüncüoglu, F. Matteini, C. L. Davies, F. Jabeen, H. J. Joyce, L. M. Herz, A. Fontcuberta I Morral, and M. B. Johnston, “Increased photoconductivity lifetime in GaAs nanowires by controlled n-type and p-type doping,” ACS Nano 10(4), 4219–4227 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

K. J. Lee, M. J. Motala, M. A. Meitl, W. R. Childs, E. Menard, A. K. Shim, and R. G. Nuzzo, “Large-area, selective transfer of microstructured silicon: a printing-based approach to high-performance thin-film transistors supported on flexible substrates,” Adv. Mater. 17(19), 2332–2336 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. Cao, R. Singh, C. Zhang, J. Han, M. Tonouchi, and W. Zhang, “Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators,” Appl. Phys. Lett. 103(10), 101106 (2013).
[Crossref]

I. Al-Naib, Y. Yang, M. M. Dignam, W. Zhang, and R. Singh, “Ultra-high Q even eigenmode resonance in terahertz metamaterials,” Appl. Phys. Lett. 106(1), 011102 (2015).
[Crossref]

J. Zhang, W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, “Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems,” Appl. Phys. Lett. 99(18), 181120 (2011).
[Crossref]

X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, and J. Li, “Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules,” Appl. Phys. Lett. 103(2), 021115 (2013).
[Crossref]

Electron. Lett. (1)

S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J.-L. Coutaz, and D. Lippens, “Terahertz time-domain spectroscopy of films fabricated from SU-8,” Electron. Lett. 35(3), 243–244 (1999).
[Crossref]

IEEE Trans. Comp. Pack. Man. (1)

J. A. Hejase, P. R. Paladhi, and P. P. Chahal, “Terahertz characterization of dielectric substratesfor component design and nondestructive evaluation of packages,” IEEE Trans. Comp. Pack. Man. 1(11), 1685–1694 (2011).

IEEE Trans. Instrum. Meas. (1)

X. Zhu, Y. Li, S. Yong, and Z. Zhuang, “A novel definition and measurement method of group delay and its application,” IEEE Trans. Instrum. Meas. 58(1), 229–233 (2009).
[Crossref]

J. Electrochem. Soc. (1)

R. K. Ahrenkiel, M. M. Al-Jassim, B. Keyes, D. Dunlavy, K. M. Jones, S. M. Vernon, and T. M. Dixon, “Minority carrier lifetime of GaAs on silicon,” J. Electrochem. Soc. 137(3), 996–1000 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (2)

C. Ding, L. Wu, D. Xu, J. Yao, and X. Sun, “Triple-band high Q factor Fano resonances in bilayer THz metamaterials,” Opt. Commun. 370, 116–121 (2016).
[Crossref]

X. He, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Dual-spectral plasmon electromagnetically induced transparency in planar metamaterials based on bright-dark coupling,” Opt. Commun. 291, 371–375 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

W. Zhou, Z. Ma, S. Chuwongin, Y. C. Shuai, J. H. Seo, D. Zhao, W. Yang, and W. Yang, “Semiconductor nanomembranes for integrated silicon photonics and flexible photonics,” Opt. Quantum Electron. 44(12-13), 605–611 (2012).
[Crossref]

Phys. Rev. B (3)

S. G. Tikhodeev, A. Yablonskii, E. Muljarov, N. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80(19), 195415 (2009).
[Crossref]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,”,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Phys. Rev. Lett. (5)

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998).
[Crossref]

J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, “Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett. 59(19), 2222–2225 (1987).
[Crossref] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91(18), 183901 (2003).
[Crossref] [PubMed]

V. M. Acosta, K. Jensen, C. Santori, D. Budker, and R. G. Beausoleil, “Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing,” Phys. Rev. Lett. 110(21), 213605 (2013).
[Crossref] [PubMed]

Other (1)

J. F. O’hara, R. Averitt, W. Padilla, and H.-T. Chen, “Dynamic frequency tuning of electric and magnetic metamaterial response,” U.S. Patent No. 8,836,439. 16. (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of the proposed RHMW system with the normally incident THz beam along the negative z direction and the obliquely incident pump beam. (b) The top view and (c) the cross section view of a unit cell in the RHMW system. The geometry parameters are P = 150 µm, l = 80 µm, w = 24 µm, tw = 80 µm, tc = 75 µm, t = 0.2 µm, respectively.
Fig. 2
Fig. 2 (a) Transmission spectra of the HMW system without photosensitive elements (black solid line) and the gold cut wire array directly deposited on PTFE substrate (red dashed line). (b)-(c) Distributions of the electric field component Ey (b) on the yOz cross section and the magnetic field component Hx (c) on the xOz cross section of the gold cut wire array at 1.284 THz (indicated by the red triangle in Fig. 2(a)), corresponding to the dipole plasmon mode. (d)-(e) Distributions of Ey (b) and Hx (c) on the xOz cross section of the HMW system at 1.269 THz (indicated by the dark blue triangle), corresponding to the hybrid TE mode. (f)-(g) Distributions of Ey (f) and Hx (g) on the yOz cross section of the HMW system at 1.302 THz (indicated by the green triangle), corresponding to the hybrid TM mode.
Fig. 3
Fig. 3 (a)-(b) Transmission spectra of the RHMW system for various values of GaAs conductivity σGaAs. The arrows at right indicate the growth direction of σGaAs. Each curve in Figs. 3 (a) and (b) is shifted by + 0.5 with respect to the previous one for better visualization. (c)-(h) Electromagnetic field distributions on the xOz cross section with different values of σGaAs: distributions of Ey (c) and Hx (d) of the RHMW system without GaAs at 1.287 THz, distributions of Ey (e) and Hx (f) of the RHMW system with σGaAs = 2 × 104 S/m at 1.274 THz, and distributions of Ey (g) and Hx (h) of the RHMW system with σGaAs = 1 × 106 S/m at 1.272 THz.
Fig. 4
Fig. 4 (a) Transmission spectra of the HMW system in absence of GaAs with different loss tangents of the waveguide and cladding layers: tanδw = 0 and tanδc = 0 (dark blue line), tanδw = 6.3e-6 and tanδc = 8e-4 (orange line), and tanδw = 1e-3 and tanδc = 8e-4 (cyan line). (b) Transmission spectra of the RHMW system when σGaAs = 1 × 106 S/m with different loss tangents of the waveguide and cladding layers: tanδw = 0 and tanδc = 0 (dark blue line), tanδw = 6.3e-6 and tanδc = 8e-4 (orange line), and tanδw = 1e-3 and tanδc = 8e-4 (cyan line). The imaginary parts of the permittivities of the waveguide and cladding are also provided as ɛw” and ɛc”, repectively. (c) Group delay spectrum of the the HMW system in absence of GaAs with the loss tangents of the waveguide and cladding layers tanδw = 6.3e-6 and tanδc = 8e-4. (d) Calculated group delay at 1.27 THz (dark blue squares) and at 1.30 THz (red triangles) of the OCHMW system with tanδw = 6.3e-6 and tanδc = 8e-4 as a function of σGaAs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tan ( κ d ) = κ ( γ c + γ s ) κ 2 γ c γ s , ( TE mode )
tan ( κ d ) = ε w κ ( ε s γ c + ε c γ s ) ε c ε s κ 2 ε w 2 γ c γ s , ( TE mode )
β = k x y + i 2 π P x x + j 2 π P y y ,

Metrics