Abstract

In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter

Yiping Wang, Xiaoqi Ni, Ming Wang, Yifeng Cui, and Qingyun Shi
Opt. Express 25(2) 644-653 (2017)

Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques

Amelia Lavinia Ricchiuti, David Barrera, Salvador Sales, Luc Thevenaz, and José Capmany
Opt. Express 21(23) 28175-28181 (2013)

Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
    [Crossref]
  3. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
    [Crossref]
  4. C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
    [Crossref]
  5. T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
    [Crossref]
  6. J. Capmany and D. Novak, “Microwave photonic combines two words,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  7. X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
    [Crossref] [PubMed]
  8. T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio frequency Mach-Zehnder interferometer,” Opt. Lett. 37(4), 647–649 (2012).
    [Crossref] [PubMed]
  9. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
    [Crossref] [PubMed]
  10. Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
    [Crossref]
  11. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  12. W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
    [Crossref]
  13. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [Crossref] [PubMed]
  14. Y. Wang, J. Zhang, O. Coutinho, and J. Yao, “Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform,” Opt. Lett. 40(21), 4923–4926 (2015).
    [Crossref] [PubMed]
  15. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  16. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  17. J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
    [Crossref]
  18. D. B. Hunter and R. A. Minasian, “Reflectively tapped fibre optic transversal filter using in-fiber Bragg gratings,” Electron. Lett. 31(12), 1010–1012 (1995).
    [Crossref]

2016 (1)

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

2015 (1)

2013 (3)

2012 (1)

2011 (1)

W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
[Crossref]

2010 (1)

Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[Crossref]

2009 (1)

2008 (2)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

X. Dong, L. Y. Shao, H. Y. Fu, H. Y. Tam, and C. Lu, “Intensity-modulated fiber Bragg grating sensor system based on radio-frequency signal measurement,” Opt. Lett. 33(5), 482–484 (2008).
[Crossref] [PubMed]

2007 (1)

J. Capmany and D. Novak, “Microwave photonic combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

1997 (2)

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
[Crossref]

1996 (1)

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

1995 (2)

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

D. B. Hunter and R. A. Minasian, “Reflectively tapped fibre optic transversal filter using in-fiber Bragg gratings,” Electron. Lett. 31(12), 1010–1012 (1995).
[Crossref]

Askins, C. G.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Atia, W. A.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

Barrera, D.

Capmany, J.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

J. Capmany and D. Novak, “Microwave photonic combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Cascon, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Chan, E. H. W.

Coutinho, O.

Davis, M. A.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Dong, X.

Friebele, E. J.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Fu, H. Y.

Han, Q.

Huang, J.

Huang, X.

Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[Crossref]

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Reflectively tapped fibre optic transversal filter using in-fiber Bragg gratings,” Electron. Lett. 31(12), 1010–1012 (1995).
[Crossref]

Kerdey, A. D.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kong, F.

Koo, K. P.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lan, X.

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
[Crossref]

Li, W.

F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
[Crossref] [PubMed]

W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
[Crossref]

Liu, W.

W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
[Crossref]

Lu, C.

Marti, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Martin, J. L.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Mawatari, T.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

Minasian, R. A.

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

D. B. Hunter and R. A. Minasian, “Reflectively tapped fibre optic transversal filter using in-fiber Bragg gratings,” Electron. Lett. 31(12), 1010–1012 (1995).
[Crossref]

Nelson, D.

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonic combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega, B.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Patrick, H. J.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M. A.

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ricchiuti, A. L.

Sales, S.

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Shao, L. Y.

Singh, H.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

Sirkis, J. S.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

Tam, H. Y.

Thevenaz, L.

Udd, E.

C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
[Crossref]

Wagreich, R. B.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

Wang, M.

Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[Crossref]

Wang, Y.

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

Y. Wang, J. Zhang, O. Coutinho, and J. Yao, “Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform,” Opt. Lett. 40(21), 4923–4926 (2015).
[Crossref] [PubMed]

Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[Crossref]

Wei, T.

Xiao, H.

Yao, J.

Yao, J. P.

W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
[Crossref]

Yi, X.

Zhang, J.

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

Y. Wang, J. Zhang, O. Coutinho, and J. Yao, “Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform,” Opt. Lett. 40(21), 4923–4926 (2015).
[Crossref] [PubMed]

Electron. Lett. (2)

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric force on fiber Bragg gratings fabricated in low birefringent fiber,” Electron. Lett. 32(13), 1223–1224 (1996).
[Crossref]

D. B. Hunter and R. A. Minasian, “Reflectively tapped fibre optic transversal filter using in-fiber Bragg gratings,” Electron. Lett. 31(12), 1010–1012 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (2)

W. Liu, W. Li, and J. P. Yao, “Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature,” IEEE Photonics Technol. Lett. 23(18), 1340–1342 (2011).
[Crossref]

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

J. Lightwave Technol. (4)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

A. D. Kerdey, M. A. Davis, H. J. Patrick, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber Grating Sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” J. Lightwave Technol. 13(10), 2003–2012 (1995).
[Crossref]

Meas. Sci. Technol. (1)

Y. Wang, M. Wang, and X. Huang, “High sensitivity fiber Bragg grating transversal force sensor based on centroid measurement of polarization dependent loss,” Meas. Sci. Technol. 21(6), 065304 (2010).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonic combines two words,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

C. M. Lawrence, D. V. Nelson, and E. Udd, “Measurement of transversal strains with fiber gratings,” Proc. SPIE 3042, 218–228 (1997).
[Crossref]

Smart Mater. Struct. (1)

T. Mawatari and D. Nelson, “A multi-parameter Bragg grating fiber optic sensor and triaxial strain measurement,” Smart Mater. Struct. 17(3), 035033 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the proposed load sensing system.
Fig. 2
Fig. 2 Simulated frequency response of the notch MPF for different fixed TDD.
Fig. 3
Fig. 3 Measured MPF response when different loads are applied.
Fig. 4
Fig. 4 Zoomed spectra of the first notch at different load.
Fig. 5
Fig. 5 Frequency shift of first-notch as a function of applied load with 18mm fiber length under load.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ T d = Δ T 0 + Δ T Δ λ = Δ T 0 + D L Δ λ
H ( f ) = a 0 + a 1 e j 2 π f Δ T d
P o u t = P 1 + P 1 + 2 P 1 P 2 cos ( 2 π f Δ T d )
f n o t c h = ( k + 1 2 ) 1 Δ T d , k = 0 , 1 , 2 ,
Δ λ = C F
C = 2 n 2 λ B 1 + υ π l b E ( p 11 p 12 )
Δ T d = Δ T 0 + D L C F
Δ f n o t c h =( k + 1 2 + ( 1 Δ T d 1 Δ T 0 ) ( k + 1 2 + D L C ( Δ T 0 ) 2 F

Metrics