Abstract

This study demonstrates the efficacy of combining a matrix of silver nanoparticles (Ag-NPs) with indium nanoparticles (In-NPs) to improve the electric and optical performance of plasmonic silicon solar cells. We examined the excitation of localized surface plasmons of Ag-NPs and In-NPs using surface enhanced Raman scattering measurements. Optical reflectance and external quantum efficiency (EQE) measurements demonstrate that the light scattering of Ag-NPs at short wavelengths can be improved by surrounding them with In-NPs. This also leads to high EQE band matching in the high energy band of the AM1.5G solar energy spectrum. Impressive improvements in optical reflectance and EQE response were also observed at short wavelengths. Cells with a matrix of Ag-NPs (20% surface coverage) surrounded by In-NPs (80% surface coverage) increased the overall efficiency of the cell by 31.83%, as confirmed by photovoltaic current density-voltage characterization under AM 1.5 G illumination.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-enhanced performance of CdS/CdTe solar cells using Au nanoparticles

Sangsu Kim, Jonghee Suh, Taeyueb Kim, Jinki Hong, and Shinhaeng Cho
Opt. Express 27(15) 22017-22024 (2019)

Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer

Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang
Opt. Express 18(3) 2682-2694 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (20pp) (2011).
    [Crossref]
  2. X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
    [Crossref]
  3. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  4. M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
    [Crossref] [PubMed]
  5. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  6. K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
    [Crossref]
  7. J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
    [Crossref]
  8. T. Sandu, “Shape effects on localized surface plasmon resonances in metallic nanoparticles,” J. Nanopart. Res. 14(950), 1–10 (2012).
    [PubMed]
  9. E. Anno and M. Tanimoto, “Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles,” J. Appl. Phys. 98(5), 053510 (2005).
    [Crossref]
  10. C. Pahud, O. Isabella, A. Naqavi, F. J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
    [Crossref] [PubMed]
  11. H. Dai, M. Li, Y. Li, H. Yu, F. Bai, and X. Ren, “Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface,” Opt. Express 20(S4), A502–A509 (2012).
    [Crossref] [PubMed]
  12. P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Opt. Express 20(S5), A641–A654 (2012).
    [Crossref] [PubMed]
  13. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  14. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref] [PubMed]
  15. M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
    [Crossref]
  16. M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
    [Crossref]
  17. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [Crossref]
  18. D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [Crossref]
  19. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [Crossref]
  20. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
    [Crossref] [PubMed]
  21. L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
    [Crossref] [PubMed]
  22. W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
    [Crossref] [PubMed]
  23. H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
    [Crossref]
  24. S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
    [Crossref]
  25. P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
    [Crossref]

2014 (3)

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
[Crossref]

M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
[Crossref] [PubMed]

W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
[Crossref] [PubMed]

2013 (2)

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

C. Pahud, O. Isabella, A. Naqavi, F. J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

2012 (4)

H. Dai, M. Li, Y. Li, H. Yu, F. Bai, and X. Ren, “Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface,” Opt. Express 20(S4), A502–A509 (2012).
[Crossref] [PubMed]

P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Opt. Express 20(S5), A641–A654 (2012).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

T. Sandu, “Shape effects on localized surface plasmon resonances in metallic nanoparticles,” J. Nanopart. Res. 14(950), 1–10 (2012).
[PubMed]

2010 (3)

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
[Crossref]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

2009 (1)

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

2008 (3)

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

2006 (1)

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

2005 (1)

E. Anno and M. Tanimoto, “Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles,” J. Appl. Phys. 98(5), 053510 (2005).
[Crossref]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

2003 (1)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2000 (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Andrae, P.

M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
[Crossref] [PubMed]

Anno, E.

E. Anno and M. Tanimoto, “Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles,” J. Appl. Phys. 98(5), 053510 (2005).
[Crossref]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Bai, F.

Ballif, C.

Beck, F. J.

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Catchpole, K. R.

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Coronado, E.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Dai, H.

Dekacs, D.

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Doak, J.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Fan, X.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Gangopadhyay, P.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Ghosh, K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Gupta, R. K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Haug, F. J.

Herzig, H. P.

Ho, W. J.

W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Ihara, M.

M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
[Crossref]

Inoue, S.

M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
[Crossref]

Isabella, O.

Kahol, P. K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Kalavathi, S.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Kanno, M.

M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
[Crossref]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Kelly, K.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Kreibig, U.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Lee, K. C.

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Lee, Y. Y.

W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
[Crossref] [PubMed]

Li, M.

Li, Y.

Lim, S. H.

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Lin, C. H.

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Lin, S. J.

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Lu, L.

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

Lu, Y. J.

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Luo, Z.

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

Luth, H.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Manivannan, K.

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Manley, P.

M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
[Crossref] [PubMed]

Mar, W.

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Matheu, P.

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Meissner, D.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Mertens, H.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

Mokkapti, S.

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

Nair, K. G. M.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Naqavi, A.

Pahud, C.

Panigrahi, B. K.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Polman, A.

P. Spinelli and A. Polman, “Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Opt. Express 20(S5), A641–A654 (2012).
[Crossref] [PubMed]

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

Ravindran, T. R.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Ren, X.

Rostalski, J.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Sandu, T.

T. Sandu, “Shape effects on localized surface plasmon resonances in metallic nanoparticles,” J. Nanopart. Res. 14(950), 1–10 (2012).
[PubMed]

Santbergen, R.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Schatz, G.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schmid, M.

M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
[Crossref] [PubMed]

Singh, D. J.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
[Crossref]

Smets, A. H.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Spinelli, P.

Su, S. Y.

W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
[Crossref] [PubMed]

Sundaravel, B.

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

Tan, H.

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Tanimoto, M.

E. Anno and M. Tanimoto, “Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles,” J. Appl. Phys. 98(5), 053510 (2005).
[Crossref]

Tichelaar, F. D.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, C. S.

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Verhoeven, J.

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

Westphalen, M.

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Xu, T.

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

Yu, E. T.

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

Yu, H.

Yu, L.

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

Zäch, M.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Zeman, M.

C. Pahud, O. Isabella, A. Naqavi, F. J. Haug, M. Zeman, H. P. Herzig, and C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21(S5), A786–A797 (2013).
[Crossref] [PubMed]

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Zhao, L.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zheng, W.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
[Crossref]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Appl. Phys. Lett. (6)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

D. Dekacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[Crossref]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, “Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon,” Appl. Phys. Lett. 85(8), 1317–1319 (2004).
[Crossref]

S. Mokkapti, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009).
[Crossref]

P. Gangopadhyay, T. R. Ravindran, K. G. M. Nair, S. Kalavathi, B. Sundaravel, and B. K. Panigrahi, “Raman scattering studies of cobalt nanoclusters formed during high energy implantation of cobalt ions in a silica matrix,” Appl. Phys. Lett. 90(6), 063108 (2007).
[Crossref]

J. Appl. Phys. (2)

E. Anno and M. Tanimoto, “Size-dependent change in interband absorption and broadening of optical plasma-resonance absorption of indium particles,” J. Appl. Phys. 98(5), 053510 (2005).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Nanopart. Res. (1)

T. Sandu, “Shape effects on localized surface plasmon resonances in metallic nanoparticles,” J. Nanopart. Res. 14(950), 1–10 (2012).
[PubMed]

J. Phys. Chem. B (1)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Light Sci. Appl. (1)

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), 1–13 (2014).
[Crossref]

Nano Lett. (2)

H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13(1), 59–64 (2013).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

W. J. Ho, Y. Y. Lee, and S. Y. Su, “External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles,” Nanoscale Res. Lett. 9(1), 483 (2014).
[Crossref] [PubMed]

M. Schmid, P. Andrae, and P. Manley, “Plasmonic and photonic scattering and near fields of nanoparticles,” Nanoscale Res. Lett. 9(1), 50 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology 21(23), 235201 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Physcia E (2)

M. Ihara, M. Kanno, and S. Inoue, “Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of siliver nanoparticles modified with polymer,” Physcia E 42(10), 2867–2871 (2010).
[Crossref]

J. Doak, R. K. Gupta, K. Manivannan, K. Ghosh, and P. K. Kahol, “Effect of particle size distributions on absorbance spectra of gold nanoparticles,” Physcia E 42(5), 1605–1609 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhance organic solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 97–105 (2000).
[Crossref]

Surf. Coat. Tech. (1)

K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu, “Size effect of Ag nanoparticles on surface plasmon resonance,” Surf. Coat. Tech. 202(22-23), 5339–5342 (2008).
[Crossref]

Other (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D: Appl. Phys. 44, 283001 (20pp) (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram showing cells with (a) uniformly deposited Ag-NPs, (b) matrix-pattern of Ag-NPs, and (c) matrix-pattern of Ag-NPs surrounded by In-NPs. (d) SEM image of the cell with Ag-NPs surrounding by In-NPs, which the formation of matrix-pattern of Ag-NPs with coverage of 20%.
Fig. 2
Fig. 2 (a) SEM image and (b) size distribution and surface coverage of Ag-NPs, (c) SEM image and (d) the size distribution and surface coverage of In-NPs.
Fig. 3
Fig. 3 Raman spectra of TiO2/glass, Ag-NPs/TiO2/glass, and In-NPs/TiO2/glass samples. A semiconductor laser operating at 473 nm with output power of 0.09 mW was used as the excitation source.
Fig. 4
Fig. 4 Optical reflectance: (a) bare solar cell, cell with a TiO2 layer, and cell with uniformly deposited Ag-NPs on a TiO2 layer; (b) cells with the matrix of Ag-NPs with either 20% or 40% surface coverage on TiO2 layer and cell with uniformly deposited Ag-NPs on TiO2 layer; (c) cells with matrix of Ag-NPs and cells with matrix of Ag-NPs surrounded by In-NPs (Ag-NPs surface coverage of 20% or 40%).
Fig. 5
Fig. 5 EQE response: (a) bare solar cell, a cell with a TiO2 layer, and cell with uniformly deposited Ag-NPs on a TiO2 layer; (b) cell with matrix of Ag-NPs on TiO2 layer (20% or 40% surface coverage) and cell with uniformly deposited Ag-NPs on TiO2 layer; (c) cell with matrix of Ag-NPs and cell matrix of Ag-NPs surrounded by In-NPs (20/80% or 40/60%).
Fig. 6
Fig. 6 (a) EQE curves and AM1.5G solar energy spectrum of all cells evaluated in this study: (b) enhancement factor of EQE for cell with uniformly deposited Ag-NPs, cell with matrix of Ag-NPs and cells with matrix of Ag-NPs surrounded by In-NPs, compared that of cell with only TiO2 layer.
Fig. 7
Fig. 7 Photovoltaic J-V characteristics (a) bare solar cell, cell with TiO2 layer, and cell with uniformly distributed Ag-NPs on TiO2 layer; (b) cell with uniformly distributed Ag-NPs, cell with matrix of Ag-NPs, and cell with matrix of Ag-NPs surrounded by In-NPs.

Tables (2)

Tables Icon

Table 1 Average weighted reflctance (RW) and average weighted EQE (EQEW) calculated for wavelengths (λ) from 350 to 1100 nm

Tables Icon

Table 2 Photovoltaic performance of all evaluated solar cells.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R W = λ min λ max R(λ) ϕ ph (λ)dλ λ min λ max ϕ ph (λ)dλ
EQ E W = λ min λ max EQE(λ) ϕ ph (λ) λ min λ max ϕ ph (λ)
J SC = λ 1 λ n EQE(λ)λ E AM1.5G (λ)dλ

Metrics