Abstract

Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fully-integrated CMOS single photon counter

S. Tisa, A. Tosi, and F. Zappa
Opt. Express 15(6) 2873-2887 (2007)

Variable-Load Quenching Circuit for single-photon avalanche diodes

Simone Tisa, Fabrizio Guerrieri, and Franco Zappa
Opt. Express 16(3) 2232-2244 (2008)

Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes

Giulia Acconcia, Alessandro Cominelli, Massimo Ghioni, and Ivan Rech
Opt. Express 26(12) 15398-15410 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
    [Crossref]
  2. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  3. X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
    [Crossref] [PubMed]
  4. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  5. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
    [Crossref]
  6. R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
    [Crossref] [PubMed]
  7. A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
    [Crossref]
  8. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref] [PubMed]
  9. C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.
  10. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128× 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 410–412.
  11. F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
    [Crossref]
  12. C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
    [Crossref]
  13. Micro Photon Devices (MPD), “SPC3” http://www.micro-photon-devices.com/Products/Photon-Counters/SPC3
  14. M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
    [Crossref]
  15. Micro Photon Devices (MPD), PDM Series http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf
  16. G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
    [Crossref]
  17. Excelitas, “SPCM-AQRH” http://www.excelitas.com/Downloads/DTS_SPCM-AQRH.pdf
  18. Laser Components, “SAP500” http://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lcd/sap-series.pdf
  19. I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
    [Crossref]
  20. J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
    [Crossref]
  21. E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
    [Crossref]
  22. I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
    [Crossref] [PubMed]
  23. C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
    [Crossref]
  24. N. H. Weste and D. M. Harris, Integrated Circuit Design (Pearson, 2011).

2016 (1)

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

2015 (1)

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

2014 (2)

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

2012 (4)

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

2011 (1)

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

2010 (1)

2008 (1)

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

2007 (1)

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

2006 (1)

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

2004 (1)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

1996 (1)

Bellisai, S.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Borghetti, F.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Brockherde, W.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Bronzi, D.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Buller, G. S.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Bülter, A.

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

Cammi, C.

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Charbon, E.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Colyer, R. A.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Cova, S.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Durini, D.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Erdmann, R.

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

Fernandez, V.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

Fishburn, M. W.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Gersbach, M.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Ghioni, M.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Gordon, K. J.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

Grant, L. A.

E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

Gulinatti, A.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

Henderson, R. K.

E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128× 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 410–412.

Ingargiola, A.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

Kell, G.

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

Labanca, I.

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

Lacaita, A.

Li, D. U.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Lindner, S.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

Maccagnani, P.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

Markovic, B.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Maruyama, Y.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Matsubara, H.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Ogawa, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Ohta, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Panzeri, F.

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Paschen, U.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Pavia, J. M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

Pellegrini, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Rech, I.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

Richardson, J.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Richardson, J. A.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128× 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 410–412.

Samori, C.

Scalia, G.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Scandini, M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Soga, M.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Stoppa, D.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Takai, I.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Tisa, S.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Tosi, A.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Townsend, P. D.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

Veerappan, C.

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Villa, F.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Wahl, M.

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

Walker, R.

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

Walker, R. J.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128× 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 410–412.

Wallace, A. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Webster, E. A.

E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

Weiss, S.

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express 1(5), 1408–1431 (2010).
[Crossref] [PubMed]

Weyers, S.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

Wolf, M.

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

Yamashita, T.

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Zappa, F.

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE Electron Device Lett. (1)

E. A. Webster, L. A. Grant, and R. K. Henderson, “A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology,” IEEE Electron Device Lett. 33(11), 1589–1591 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40(7), 900–908 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

X. Michalet, A. Ingargiola, R. A. Colyer, G. Scalia, S. Weiss, P. Maccagnani, A. Gulinatti, I. Rech, and M. Ghioni, “Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804420 (2014).
[Crossref] [PubMed]

M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
[Crossref]

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

IEEE J. Solid-State Circuits (1)

J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon, “A 1× 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography,” IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015).
[Crossref]

IEEE Photonics J. (1)

F. Villa, B. Markovic, S. Bellisai, D. Bronzi, A. Tosi, F. Zappa, S. Tisa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements,” IEEE Photonics J. 4(3), 795–804 (2012).
[Crossref]

J. Mod. Opt. (2)

C. Cammi, A. Gulinatti, I. Rech, F. Panzeri, and M. Ghioni, “SPAD array module for multi-dimensional photon timing applications,” J. Mod. Opt. 59(2), 131–139 (2012).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” J. Mod. Opt. 59(17), 1489–1499 (2012).
[Crossref]

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time- correlated single photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Proc. SPIE (2)

M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, and S. Cova, “Large-area low-jitter silicon single photon avalanche diodes,” Proc. SPIE 6900, 1–13 (2008).
[Crossref]

G. Kell, A. Bülter, M. Wahl, and R. Erdmann, “A. Bulter M. Wahl, and R. Erdmann, “τ-SPAD: a new red sensitive single-photon counting module,” Proc. SPIE 8033, 803303 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

I. Rech, I. Labanca, M. Ghioni, and S. Cova, “Modified single photon counting modules for optimal timing performance,” Rev. Sci. Instrum. 77(3), 033104 (2006).
[Crossref]

Sensors (Basel) (1)

I. Takai, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors (Basel) 16(4), 459 (2016).
[Crossref] [PubMed]

Other (8)

N. H. Weste and D. M. Harris, Integrated Circuit Design (Pearson, 2011).

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

Excelitas, “SPCM-AQRH” http://www.excelitas.com/Downloads/DTS_SPCM-AQRH.pdf

Laser Components, “SAP500” http://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lcd/sap-series.pdf

Micro Photon Devices (MPD), PDM Series http://www.micro-photon-devices.com/Docs/Datasheet/PDM.pdf

Micro Photon Devices (MPD), “SPC3” http://www.micro-photon-devices.com/Products/Photon-Counters/SPC3

C. Veerappan, J. Richardson, R. Walker, D. U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R. K. Henderson, and E. Charbon, “A 160× 128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 312–314.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128× 96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in Proceedings of IEEE Conference on Solid-State Circuits (IEEE, 2011), pp. 410–412.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Photon Detection Efficiency (PDE) of SPAD developed with different technologies: RE-SPAD [7]; CMOS camera SPC3 [14]; PDM [16]; τ-SPAD [17]; SPCM-AQRH [18]; SAP-500 [19], CMOS SPAD by Webster et al. [21].
Fig. 2
Fig. 2 The active quenching circuit architecture.
Fig. 3
Fig. 3 Schematic of the sense stage and HV transistors demanded to active quench and reset phases.
Fig. 4
Fig. 4 Simplified schematic of the AQC logic circuit.
Fig. 5
Fig. 5 Schematic of the programmable delayer.
Fig. 6
Fig. 6 Layout of the active quenching circuit.
Fig. 7
Fig. 7 Waveform at the anode of a RE-SPAD for a quench-reset voltage variation of 20V and 30V.
Fig. 8
Fig. 8 SPAD anode waveform with minimum distance between two avalanche events.
Fig. 9
Fig. 9 IRF of a 100µm-diameter custom technology SPAD operated by the presented AQC.
Fig. 10
Fig. 10 FWHM timing jitter of the AQC output as a function of the detector DCR.

Tables (2)

Tables Icon

Table 1 Dimensions of the sense stage transistors

Tables Icon

Table 2 Dimensions of MQ and MR transistors and the first and last inverters of their drivers

Metrics