Abstract

A novel temperature- and strain-independent optical fiber torsion sensor based on a phase-shifted fiber Bragg grating (PSFBG) inscribed by the line-by-line (LbL) technique in a standard single-mode fiber with a femtosecond laser has been proposed and experimentally demonstrated. The strong birefringence created by the LbL inscription technique leads to the significant polarization splitting of the transmission peak of the PSFBG. By simply monitoring the variation of the amplitude difference between the two polarization-peaks, the fiber torsion angle and the fiber torsion direction can be simultaneously deduced without temperature and strain confusion. The torsion sensor exhibits a high torsion sensitivity of up to −1032.71 dB/(rad/mm), with the distinct advantages of low manufacture cost, small dimension (just ~1.72mm), and extremely robust and simple structure, which make it very attractive for practical applications. To the best of our knowledge, this is the smallest torsion sensor ever reported.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity modulated torsion sensor based on optical fiber reflective Lyot filter

Bo Huang, Xuewen Shu, and Yueqing Du
Opt. Express 25(5) 5081-5090 (2017)

Low-cost temperature- and strain-insensitive twist sensor based on a hybrid fiber grating structure

Xi Guo, Zhikun Xing, Huabao Qin, Qizhen Sun, Hushan Wang, Deming Liu, Lin Zhang, and Zhijun Yan
Appl. Opt. 58(16) 4479-4483 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. Lin, L. Wang, and G. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  2. Y. Wang and Y. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
    [Crossref]
  3. Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
    [Crossref]
  4. L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
    [Crossref]
  5. D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
    [Crossref]
  6. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  7. L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
    [Crossref] [PubMed]
  8. B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
    [Crossref]
  9. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
    [Crossref]
  10. F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
    [Crossref] [PubMed]
  11. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  12. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  13. L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
    [Crossref] [PubMed]
  14. Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
    [Crossref] [PubMed]
  15. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  16. H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
    [Crossref] [PubMed]
  17. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
    [Crossref]
  18. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  19. H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  20. P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  21. W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  22. B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
    [Crossref] [PubMed]
  23. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
    [Crossref] [PubMed]
  24. P. McIntyre and A. W. Snyder, “Light propagation in twisted anisotropic media: application to photoreceptors,” J. Opt. Soc. Am. 68(2), 149–157 (1978).
    [Crossref] [PubMed]
  25. B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
    [Crossref]
  26. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  27. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]

2015 (3)

2014 (4)

2013 (2)

2012 (2)

2011 (3)

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

2010 (4)

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

2009 (2)

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
[Crossref] [PubMed]

2006 (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

2004 (1)

Y. Wang and Y. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

2003 (1)

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

2001 (1)

1978 (1)

Aitchison, J. S.

Bai, Y.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Baptista, J. M.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

Cai, H.

Ceballos-Herrera, D. E.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Chan, C.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, L.

Chen, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

Chern, G.

Chiang, K.

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Chung, Y.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Dong, X.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Estudillo-Ayala, J. M.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Fan, Y.

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Fang, Z.

Feng, S.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Fernandes, L. A.

Frazão, O.

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Gao, R.

Garcia, L.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Gong, T.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Grenier, J. R.

Gutierrez-Zainos, F.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Haus, J. W.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Herman, P. R.

Huang, X.

Ibarra-Escamilla, B.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Jesus, C.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Jian, S.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jiang, L.

Jiang, M.

Jiang, Y.

Jin, W.

Jin, Y.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Jovanovic, N.

Ju, J.

Kim, B.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T.

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kobelke, J.

Kuzin, E. A.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Li, H.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

Liao, Y.

Lin, C.

Lin, W.

Liu, B.

Liu, D.

Liu, H.

Liu, S.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Liu, Z.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Lou, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Malnou, M.

Marshall, G. D.

Martinez-Rios, A.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

McIntyre, P.

Miao, Y.

Mo, Q.

Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Pan, Z.

Peng, W.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Qu, R.

Rao, Y.

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Y. Wang and Y. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Rojas-Laguna, R.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Roy, P.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Sanchez-Mondragon, J. J.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Santos, J. L.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Schuster, K.

Shi, L.

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Shum, P. P.

Sieg, J.

Silva, R. M.

Snyder, A. W.

Song, B.

Steel, M. J.

Sun, Q.

Tellez-Garcia, R.

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Torres-Gomez, I.

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Wang, B.

Wang, L.

Wang, M.

Wang, P.

Wang, Y.

Y. Wang and Y. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Williams, R. J.

Withford, M. J.

Wo, J.

Wu, J.

Xian, L.

Xuan, H.

Yan, D.

Yan, T.

Yan, T. Y.

Yang, F.

Ye, Q.

Yin, B.

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

Yiping, W.

Zhang, H.

Zhang, J.

Zhang, L.

Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
[Crossref] [PubMed]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

Zhang, L. Y.

Zhang, M.

Zhang, W.

Zhang, W. G.

Zhang, Y.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

Zhou, Q.

Zhu, T.

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Zou, H.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Electron. Lett. (1)

Y. Wang and Y. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (6)

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photonics Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

B. Yin, H. Li, S. Feng, Y. Bai, Z. Liu, W. Peng, S. Liu, and S. Jian, “Temperature-independent and strain-independent twist sensor based on structured PM-CFBG,” IEEE Photonics Technol. Lett. 26(15), 1565–1568 (2014).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(21–24), 2596–2598 (2006).
[Crossref]

H. Kim, T. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

P. Zu, C. Chan, Y. Jin, T. Gong, Y. Zhang, L. Chen, and X. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

IEEE Sens. J. (1)

D. E. Ceballos-Herrera, I. Torres-Gomez, A. Martinez-Rios, L. Garcia, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Commun. (3)

B. Ibarra-Escamilla, E. A. Kuzin, F. Gutierrez-Zainos, R. Tellez-Garcia, J. W. Haus, R. Rojas-Laguna, and J. M. Estudillo-Ayala, “Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror,” Opt. Commun. 217(1-6), 211–219 (2003).
[Crossref]

Y. Rao, T. Zhu, and Q. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

L. Shi, T. Zhu, Y. Fan, K. Chiang, and Y. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Opt. Express (11)

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

L. Xian, P. Wang, and H. Li, “Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities,” Opt. Express 22(17), 20260–20267 (2014).
[Crossref] [PubMed]

H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
[Crossref] [PubMed]

F. Yang, Z. Fang, Z. Pan, Q. Ye, H. Cai, and R. Qu, “Orthogonal polarization mode coupling for pure twisted polarization maintaining fiber Bragg gratings,” Opt. Express 20(27), 28839–28845 (2012).
[Crossref] [PubMed]

W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
[Crossref] [PubMed]

B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
[Crossref] [PubMed]

L. Chen, W. G. Zhang, L. Wang, H. Zhang, J. Sieg, Q. Zhou, L. Y. Zhang, B. Wang, and T. Y. Yan, “In-fiber torsion sensor based on dual polarized Mach-Zehnder interference,” Opt. Express 22(26), 31654–31664 (2014).
[Crossref] [PubMed]

Q. Zhou, W. Zhang, L. Chen, T. Yan, L. Zhang, L. Wang, and B. Wang, “Fiber torsion sensor based on a twist taper in polarization-maintaining fiber,” Opt. Express 23(18), 23877–23886 (2015).
[Crossref] [PubMed]

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
[Crossref] [PubMed]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18(19), 19844–19859 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the setup for the LbL inscription of PSFBGs with femtosecond laser pulses.
Fig. 2
Fig. 2 (a) Principle of the inscription of the LbL PSFBGs. (b) The schematic of a LbL inscribed PSFBG in the fiber core.
Fig. 3
Fig. 3 Transmission spectra in different polarizations for a π-PSFBG.
Fig. 4
Fig. 4 Schematic diagram of the torsion sensor based on a π-PSFBG.
Fig. 5
Fig. 5 (a) Transmission spectra evolution of π-PSFBG under torsion in clockwise direction from 0° to 80° in an elevation step of 20°. (b)Measured P1-P2 under torsion in clockwise and anticlockwise directions from 0° to 360°.
Fig. 6
Fig. 6 For 0°, 30° and 60° twisted PSFBG, the measured P1-P2 under different (a) temperature and (b) strain levels.
Fig. 7
Fig. 7 The birefringence evolution of the π-PSFBG under torsion in clockwise direction from 0° to 360° in an elevation step of 30°.
Fig. 8
Fig. 8 Schematic of the twisted optical fiber.
Fig. 9
Fig. 9 The evolution process for P1-P2 under torsion from −360° to 360° in microwatts.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d A x d z i β x A x = ω A y d A y d z i β y A y = ω A x
F L = ( cos η i δ L 2 sin η η δ C 2 sin η η δ C 2 sin η η cos η + i δ L 2 sin η η )
δ L = 2 π λ Δ n L δ C = 2 ( 1 g / 2 ) θ η = ( δ L 2 ) 2 + ( δ C 2 ) 2
F L = ( cos δ C 2 sin δ C 2 sin δ C 2 cos δ C 2 )
( A x ( L ) A y ( L ) ) = 1 2 ( β x + β y ) F L ( A x ( 0 ) A y ( 0 ) )
θ ' = 45 δ C 2 = 45 ˚ 0.92 θ
α = 45 ˚ 0.92 L 0 L θ
I x = I 0 cos 2 α I y = I 0 sin 2 α
I = I y I x = I 0 cos 2 α = I 0 sin ( 1.104 θ 180 )  

Metrics