Abstract

We report on tensile-strained Ge/Si0.11Ge0.89 quantum-well (QW) metal-semiconductor-metal (MSM) photodetectors on Si substrates. A tensile strain of 0.21% is introduced into the Ge wells by growing the QW stack on in-situ annealed Ge-on-Si virtual substrates (VS). The optical characterization of Ge/Si0.11Ge0.89 QW MSM photodetectors indicates that the optical response increases to a wavelength of 1.5 μm or higher owing to the strain-induced direct bandgap shrinkage. Analysis of the band structure by using a k · p model suggests that by optimizing the tensile strain and Ge well width, tensile-strained Ge/SiGe QW photodetectors can be designed to cover the telecommunication C-band and beyond for optical telecommunications and on-chip interconnection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tensile-strained Ge/SiGe multiple quantum well microdisks

Xiaochi Chen, Colleen S. Fenrich, Muyu Xue, Ming-Yen Kao, Kai Zang, Ching-Ying Lu, Edward T. Fei, Yusi Chen, Yijie Huo, Theodore I. Kamins, and James S. Harris
Photon. Res. 5(6) B7-B14 (2017)

SiGe quantum well infrared photodetectors on strained-silicon-on-insulator

Johannes Aberl, Moritz Brehm, Thomas Fromherz, Jeffrey Schuster, Jacopo Frigerio, and Patrick Rauter
Opt. Express 27(22) 32009-32018 (2019)

Design and analysis of electro-absorption modulators with uniaxially stressed Ge/SiGe multiple quantum wells

Jianfeng Gao, Junqiang Sun, Jialin Jiang, Heng Zhou, and Yang Zhou
Opt. Express 25(10) 10874-10884 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
    [Crossref]
  2. D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
    [Crossref]
  3. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
    [Crossref] [PubMed]
  4. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
    [Crossref]
  5. G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-SixGeySn1−x−y quantum-well lasers at telecom wavelength,” Opt. Express 17, 11246–11258 (2009).
    [Crossref] [PubMed]
  6. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
    [Crossref]
  7. Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
    [Crossref]
  8. E. Onaran, M. C. Onbasli, A. Yesilyurt, H. Y. Yu, A. M. Nayfeh, and A. K. Okyay, “Silicon – Germanium multi-quantum well photodetectors in the near infrared,” Opt. Express 20, 7608–7615 (2012).
    [Crossref] [PubMed]
  9. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
    [Crossref]
  10. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
    [Crossref]
  11. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
    [Crossref]
  12. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
    [Crossref]
  13. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
    [Crossref]
  14. H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
    [Crossref]
  15. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection,” Opt. Express 24, 4519–4531 (2016).
    [Crossref]
  16. Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
    [Crossref]
  17. B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S.-Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22, 15639–15652 (2014).
    [Crossref] [PubMed]
  18. C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
    [Crossref]
  19. A. Gassenq, F. Gencarelli, J. V. Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
    [Crossref] [PubMed]
  20. D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
    [Crossref]
  21. G.-E. Chang and C.-O. Chang, “Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators,” IEEE J. Quantum Electron. 48, 533–541 (2012).
    [Crossref]
  22. Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
    [Crossref] [PubMed]
  23. L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
    [Crossref]
  24. M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
    [Crossref]
  25. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
    [Crossref]
  26. J.-Z. Chen, H. Li, H. H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers,” Opt. Mater. Express 4, 1178–1185 (2014).
    [Crossref]
  27. J. Liu, “Monolithically integrated Ge – on – Si active photonics,” Photonics 1, 162 (2014).
    [Crossref]
  28. G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
    [Crossref]
  29. F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
    [Crossref]
  30. J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
    [Crossref]
  31. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
    [Crossref]
  32. M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
    [Crossref]
  33. A. K. Okyay, A. M. Nayfeh, K. C. Saraswat, T. Yonehara, A. Marshall, and P. C. McIntyre, “High-efficiency metal-semiconductor-metal photodetectors on heteroepitaxially grown Ge on Si,” Opt. Lett. 31, 2565–2567 (2006).
    [Crossref] [PubMed]
  34. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).
  35. J. Tauc, Optical Properties of Solids (North Holland, 1969).

2016 (2)

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection,” Opt. Express 24, 4519–4531 (2016).
[Crossref]

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

2014 (4)

2013 (2)

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

2012 (5)

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

E. Onaran, M. C. Onbasli, A. Yesilyurt, H. Y. Yu, A. M. Nayfeh, and A. K. Okyay, “Silicon – Germanium multi-quantum well photodetectors in the near infrared,” Opt. Express 20, 7608–7615 (2012).
[Crossref] [PubMed]

A. Gassenq, F. Gencarelli, J. V. Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express 20, 27297–27303 (2012).
[Crossref] [PubMed]

G.-E. Chang and C.-O. Chang, “Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators,” IEEE J. Quantum Electron. 48, 533–541 (2012).
[Crossref]

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

2011 (6)

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

2010 (2)

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
[Crossref]

2009 (2)

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-SixGeySn1−x−y quantum-well lasers at telecom wavelength,” Opt. Express 17, 11246–11258 (2009).
[Crossref] [PubMed]

2008 (3)

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[Crossref]

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

2006 (2)

A. K. Okyay, A. M. Nayfeh, K. C. Saraswat, T. Yonehara, A. Marshall, and P. C. McIntyre, “High-efficiency metal-semiconductor-metal photodetectors on heteroepitaxially grown Ge on Si,” Opt. Lett. 31, 2565–2567 (2006).
[Crossref] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

2005 (2)

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

1998 (2)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

1964 (1)

J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
[Crossref]

Assanto, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Bauer, G.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Berroth, M.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

Bonera, E.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Campenhout, J. V.

Cao, Q.

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Carroll, L.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Cassan, E.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

Chaisakul, P.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

Chang, C.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

Chang, C.-O.

G.-E. Chang and C.-O. Chang, “Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators,” IEEE J. Quantum Electron. 48, 533–541 (2012).
[Crossref]

Chang, G. E.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
[Crossref]

Chang, G.-E.

J.-Z. Chen, H. Li, H. H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers,” Opt. Mater. Express 4, 1178–1185 (2014).
[Crossref]

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
[Crossref]

G.-E. Chang and C.-O. Chang, “Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators,” IEEE J. Quantum Electron. 48, 533–541 (2012).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-SixGeySn1−x−y quantum-well lasers at telecom wavelength,” Opt. Express 17, 11246–11258 (2009).
[Crossref] [PubMed]

Chang, S. W.

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
[Crossref]

Chang, S.-W.

Chen, J.-Z.

Chen, S.

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

Cheng, B.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

Cheng, H. H.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
[Crossref]

J.-Z. Chen, H. Li, H. H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers,” Opt. Mater. Express 4, 1178–1185 (2014).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Chrastina, D.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Chuang, S. L.

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
[Crossref]

G.-E. Chang, S.-W. Chang, and S. L. Chuang, “Theory for n-type doped, tensile-strained Ge-SixGeySn1−x−y quantum-well lasers at telecom wavelength,” Opt. Express 17, 11246–11258 (2009).
[Crossref] [PubMed]

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

Colace, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Conley, B. R.

Coudevylle, J.-R.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Diaz, A.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

Dismukes, J. P.

J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
[Crossref]

Du, W.

Edmond, S.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

Ekstrom, L.

J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
[Crossref]

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Fidaner, O.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Frigerio, J.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Gassenq, A.

Ge, Y.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Gencarelli, F.

Ghetmiri, S. A.

Grilli, E.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Guzzi, M.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Harris, J. S.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Hu, W.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

Huang, S. H.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

Imbert, F.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Isella, G.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Izard, N.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

Jutzi, M.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

Kamins, T. I.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

Kasper, E.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

Kouvetakis, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

Kuo, Y. H.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Lai, H.

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

Le Roux, X.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

Lee, Y. K.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Li, B.

Li, C.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

Li, H.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

J.-Z. Chen, H. Li, H. H. Cheng, and G.-E. Chang, “Structural and optical characteristics of Ge1−xSnx/Ge superlattices grown on Ge-buffered Si(001) wafers,” Opt. Mater. Express 4, 1178–1185 (2014).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Li, Y.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Liu, J.

J. Liu, “Monolithically integrated Ge – on – Si active photonics,” Photonics 1, 162 (2014).
[Crossref]

Liu, Z.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

Loo, R.

Margetis, J.

Marris-Morini, D.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

Marshall, A.

Mashanov, V.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Mashanov, V. I.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
[Crossref]

Masini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Mathews, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

McIntyre, P. C.

Menendez, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

Miller, D.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Miller, D. A. B.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Mosleh, A.

Müijller, E.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Muller, E.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

Narcy, G.

Naseem, H. A.

Nayfeh, A. M.

Oehme, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

Okyay, A. K.

Onaran, E.

Onbasli, M. C.

Paff, R. J.

J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
[Crossref]

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

Paul, D. J.

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[Crossref]

Peng, Y.-H.

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
[Crossref]

Pezzoli, F.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Pham, T.

Pizzi, G.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Ren, S.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Roelkens, G.

Rossbach, P.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Roth, J.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Roth, J. E.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Roucka, R.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

Rouifed, M.-S.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

Roux, X. L.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

Sanguinetti, S.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Saraswat, K. C.

Schaevitz, R.

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

Schulze, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

Shimura, Y.

Sigg, H.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Soref, R. A.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection,” Opt. Express 24, 4519–4531 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S.-Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22, 15639–15652 (2014).
[Crossref] [PubMed]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Spolenak, R.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

Stangl, J.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Su, S.

Suess, M.

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

Süijess, M.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Sun, G.

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection,” Opt. Express 24, 4519–4531 (2016).
[Crossref]

B. R. Conley, A. Mosleh, S. A. Ghetmiri, W. Du, R. A. Soref, G. Sun, J. Margetis, J. Tolle, H. A. Naseem, and S.-Q. Yu, “Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection,” Opt. Express 22, 15639–15652 (2014).
[Crossref] [PubMed]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Tauc, J.

J. Tauc, Optical Properties of Solids (North Holland, 1969).

Tolle, J.

Tran, H.

Tseng, H. H.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Vincent, B.

Virgilio, M.

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

Vivien, L.

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

von Kanel, H.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Wang, Q.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

Wang, W.

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

Wintersberger, E.

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Wohl, G.

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

Xue, C.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

Xue, H.

Yang, Y. J.

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Yesilyurt, A.

Yonehara, T.

Yu, H. Y.

Yu, S.-Q.

Zhang, G.

Zuo, Y.

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 196400 (2011).
[Crossref]

Appl. Phys. Lett. (11)

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99, 141106 (2011).
[Crossref]

Z. Liu, W. Hu, C. Li, Y. Li, C. Xue, C. Li, Y. Zuo, B. Cheng, and Q. Wang, “Room temperature direct-bandgap electroluminescence from n-type sntrain-compensated Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 101, 231108 (2012).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30 GHz bandwidth,” Appl. Phys. Lett. 98, 131112 (2011).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menendez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95, 133506 (2009).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98, 061108 (2011).
[Crossref]

H. H. Tseng, H. Li, V. Mashanov, Y. J. Yang, H. H. Cheng, G. E. Chang, R. A. Soref, and G. Sun, “GeSn-based p-i-n photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103, 231907 (2013).
[Crossref]

Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105, 231109 (2014).
[Crossref]

C. Chang, H. Li, S. H. Huang, H. H. Cheng, G. Sun, and R. A. Soref, “Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” Appl. Phys. Lett. 108, 151101 (2016).
[Crossref]

L. Carroll, F. Imbert, H. Sigg, M. Süijess, E. Müijller, M. Virgilio, G. Pizzi, P. Rossbach, D. Chrastina, and G. Isella, “Quantum-confined direct-gap transitions in tensile-strained Ge/SiGe multiple quantum wells,” Appl. Phys. Lett. 99, 031907 (2011).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–3177 (1998).
[Crossref]

IEEE J. Quantum Electron (1)

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers,” IEEE J. Quantum Electron 46, 1813–1820 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

G.-E. Chang and C.-O. Chang, “Tensile-strained Ge/SiGeSn quantum wells for polarization-insensitive electro-absorption waveguide modulators,” IEEE J. Quantum Electron. 48, 533–541 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Schaevitz, J. Roth, S. Ren, O. Fidaner, and D. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron. 14, 1082–1089 (2008).
[Crossref]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron. 12, 1503–1513 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, M.-S. Rouifed, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, and L. Vivien, “10-Gb/s Ge/SiGe multiple quantum-well waveguide photodetector,” IEEE Photonics Technol. Lett. 23, 1430–1432 (2011).
[Crossref]

M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39 GHz bandwidth,” IEEE Photonics Technol. Lett. 17, 1510–1512 (2005).
[Crossref]

J. Phys. Chem. (1)

J. P. Dismukes, L. Ekstrom, and R. J. Paff, “Lattice parameter and density in germanium-silicon alloys,” J. Phys. Chem. 68, 3021 (1964).
[Crossref]

Mat. Sci. Eng. B (1)

M. Suess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Muller, and R. Spolenak, “Tensile strained Ge quantum wells on Si substrate: Post-growth annealing versus low temperature re-growth,” Mat. Sci. Eng. B 177, 696–699 (2012).
[Crossref]

Mater. Sci. Semicond. Process. (1)

F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, G. Isella, H. von Kanel, E. Wintersberger, J. Stangl, and G. Bauer, “Raman spectroscopy determination of composition and strain in Si1−xGex/Si heterostructures,” Mater. Sci. Semicond. Process. 11, 279–284 (2008).
[Crossref]

Nanophotonics (1)

D. Marris-Morini, P. Chaisakul, M.-S. Rouifed, J. Frigerio, D. Chrastina, G. Isella, S. Edmond, X. L. Roux, J.-R. Coudevylle, and L. Vivien, “Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells,” Nanophotonics 2, 279–288 (2013).
[Crossref]

Nanotechnology (1)

Y. Chen, C. Li, H. Lai, and S. Chen, “Quantum-confined direct band transitions in tensile strained Ge/SiGe quantum wells on silicon substrates,” Nanotechnology 21, 115207 (2010).
[Crossref] [PubMed]

Nature (1)

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature 437, 1334–1336 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics (1)

J. Liu, “Monolithically integrated Ge – on – Si active photonics,” Photonics 1, 162 (2014).
[Crossref]

Phys. Rev. B (1)

D. J. Paul, “8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates,” Phys. Rev. B 77, 155323 (2008).
[Crossref]

Other (2)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (Wiley, 2009).

J. Tauc, Optical Properties of Solids (North Holland, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-sectional transmission electron microscopy image of the Ge/SiGe QWs grown on a Si substrate via a Ge virtual substrate. The misfit dislocations at the Ge/Si interface are indicated by the dotted ellipse. The high-resolution TEM image on the right shows an arrangement of defect-free atoms across the interface between the Ge and SiGe layers.
Fig. 2
Fig. 2 Comparison between the Raman spectra of a bulk Ge reference sample and the grown Ge/SiGe QW sample. The peaks for the Ge/SiGe QW sample were fitted using Gaussian curves.
Fig. 3
Fig. 3 (a) Schematic cross section and (b) SEM image of the tensile-strained Ge/Si0.89Ge0.11 QW photodetector on Si substrates.
Fig. 4
Fig. 4 Dark current-voltage characteristics of the fabricated Ge/Si0.11Ge0.89 QW MSM photodetectors. The inset shows the dark current-voltage curve at small voltages with a linear fit to the linear region of the I–V curve for the determination of turn-on voltage.
Fig. 5
Fig. 5 (a) Measured optical responsivity from the tensile-strained Ge/Si0.11Ge0.89 QW photodetector at room temperature at a bias of 3 V. (b) Effective absorption coefficient spectrum of the tensile-strained Ge/Si0.11Ge0.89 QW MSM photodetector extracted from the responsivity spectrum. The inset shows a Tauc plot for the determination of the direct bandgap energy, where the dashed line represents a fitting line using the Tauc equation.
Fig. 6
Fig. 6 Calculated band structures and confined subbands for (a) the tensile-strained Ge/Si0.89Ge0.11 QW and (b) the strain-compensated Ge/Si0.85Ge0.15 QW with a thickness of 7/10 nm, where the zero energy is set to the top valence band in the Ge well. The wavefunction of Γ-valley subbands have been scaled to 1.5 time in height for clarity.
Fig. 7
Fig. 7 (a) Calculated band edges for the various bands in the in-plane lattice matched Ge well (solid lines) and Si0.11Ge0.89 barrier (dashed lines) as a function of strain in the Ge well. (b) Barrier height for the various band for the pseudomorphic Ge/Si0.11Ge0.89 QW structure as a function of tensile strain in the Ge well. (c) Calculated transition energy of the lowest HH1-cΓ1 transition as a function of strain in the Ge well and Ge well width.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ω ( x , ε ) = 19.4 ( x 1 ) 450 ε
a SiGe = a SiGe 0 + ( 1 + ε SiGe )
ε SiGe = a SiGe a SiGe 0 a SiGe 0
a SiGe 0 = 5.413 + 0.2 x + 0.027 x 2
R = A λ ( 1 e α t )
α h ν = B ( h ν E d ) 1 / 2

Metrics