Abstract

We report the realization and characterization of an optofluidic microlaser based on a Fabry-Perot resonator fabricated by exploiting two direct writing fabrication techniques: the femtosecond laser micromachining and the inkjet printing technology. In this way a standard Fabry-Perot cavity has been integrated into an optofluidic chip. When using rhodamine 6G dissolved in ethanol at concentration of 5∙10−3 mol/l, laser emission was detected at a threshold energy density of 1.8 μJ/mm2 at least one order of magnitude lower than state-of-the-art optofluidic lasers. Linewidth below ~0.6 nm was measured under these conditions with a quality factor Q~103. These performances and robustness of the device makes it an excellent candidate for biosensing, security and environment monitoring applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining

Jiangxin Song, Jintian Lin, Jialei Tang, Yang Liao, Fei He, Zhaohui Wang, Lingling Qiao, Koji Sugioka, and Ya Cheng
Opt. Express 22(12) 14792-14802 (2014)

Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman
Opt. Express 17(14) 11719-11729 (2009)

References

  • View by:
  • |
  • |
  • |

  1. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [Crossref]
  2. G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
    [Crossref]
  3. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
    [Crossref]
  4. M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
    [Crossref] [PubMed]
  5. X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
    [Crossref] [PubMed]
  6. H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
    [Crossref] [PubMed]
  7. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29(17), 2007–2009 (2004).
    [Crossref] [PubMed]
  8. Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
    [Crossref]
  9. G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
    [Crossref]
  10. Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
    [Crossref] [PubMed]
  11. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
    [Crossref] [PubMed]
  12. M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
    [Crossref]
  13. R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
    [Crossref]
  14. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
    [Crossref]
  15. S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
    [Crossref]
  16. A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
    [Crossref]
  17. R. M. Gerosa, A. Sudirman, L. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186 (2015).
    [Crossref]

2015 (3)

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
[Crossref]

R. M. Gerosa, A. Sudirman, L. S. Menezes, W. Margulis, and C. J. S. de Matos, “All-fiber high repetition rate microfluidic dye laser,” Optica 2(2), 186 (2015).
[Crossref]

2014 (2)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

2013 (1)

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

2011 (3)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

2010 (1)

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

2009 (1)

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

2008 (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

2007 (1)

2006 (1)

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

2005 (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Aubry, G.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

Bawendi, M. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Beresna, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Cerullo, G.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Chan, Y.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Chandrahalim, H.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Chen, Q.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
[Crossref]

Chen, Y.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Cheng, Y.

Chin, L. K.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Conroy, R. S.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

de Matos, C. J. S.

Dugan, M.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Fan, X.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
[Crossref]

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Gecevicius, M.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Gerosa, R. M.

Gersborg-Hansen, M.

Haghiri-Gosnet, A.-M.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

He, J. J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Hoekstra, H. J. W. M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Kiraz, A.

A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
[Crossref]

Kou, Q.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Kristensen, A.

M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
[Crossref] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Lei, L.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

Liu, A. Q.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

LoTurco, S.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Margulis, W.

Mayers, B. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Meance, S.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

Menezes, L. S.

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

Midorikawa, K.

Nocera, D. G.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Ohl, C. D.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Osellame, R.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Pollnau, M.

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

Psaltis, D.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

Ramponi, R.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Said, A. A.

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Snee, P. T.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Song, W.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

Soto-Velasco, J.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Sudirman, A.

Sugioka, K.

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

Vezenov, D. V.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Vishnubhatla, K. C.

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Wang, C.

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

Wang, Q. J.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Whitesides, G. M.

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Yesilyurt, I.

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

Yoon, H. S.

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Yun, S.-H.

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

A. Kiraz, Q. Chen, and X. Fan, “Optofluidic lasers with aqueous quantum dots,” ACS Photonics 2(6), 707–713 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. Beresna, M. Gecevičius, and P. G. Kazansky, “Ultrafast laser direct writing and nanostructuring in transparent materials,” Adv. Opt. Photonics 6(3), 293–339 (2014).
[Crossref]

Appl. Phys. Lett. (3)

Q. Kou, I. Yesilyurt, and Y. Chen, “Collinear dual-color laser emission from a microfluidic dye laser,” Appl. Phys. Lett. 88(9), 091101 (2006).
[Crossref]

G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Meance, J. J. He, and A.-M. Haghiri-Gosnet, “A multicolor microfluidic droplet dye laser with single mode emission,” Appl. Phys. Lett. 98(11), 111111 (2011).
[Crossref]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, “Low-order distributed feedback optofluidic dye laser with reduced threshold,” Appl. Phys. Lett. 94(5), 051117 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, “A low-threshold, high-efficiency microfluidic waveguide laser,” J. Am. Chem. Soc. 127(25), 8952–8953 (2005).
[Crossref] [PubMed]

J. Micromech. Microeng. (2)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[Crossref]

S. LoTurco, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Hybrid chemical etching of femtosecond laser irradiated structures for engineered microfluidic devices,” J. Micromech. Microeng. 23(8), 085002 (2013).
[Crossref]

Lab Chip (2)

H. Chandrahalim, Q. Chen, A. A. Said, M. Dugan, and X. Fan, “Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication,” Lab Chip 15(10), 2335–2340 (2015).
[Crossref] [PubMed]

Y. Yang, A. Q. Liu, L. Lei, L. K. Chin, C. D. Ohl, Q. J. Wang, and H. S. Yoon, “A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip 11(18), 3182–3187 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (2)

R. Osellame, H. J. W. M. Hoekstra, G. Cerullo, and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips,” Laser Photonics Rev. 5(3), 442–463 (2011).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1-2), 26–46 (2008).
[Crossref]

Microelectron. Eng. (1)

G. Aubry, S. Meance, A.-M. Haghiri-Gosnet, and Q. Kou, “Flow rate based control of wavelength emission in a multicolor microfluidic dye laser,” Microelectron. Eng. 87(5-8), 765–768 (2010).
[Crossref]

Nat. Methods (1)

X. Fan and S.-H. Yun, “The potential of optofluidic biolasers,” Nat. Methods 11(2), 141–147 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Sketch of the device. a) Fabry-Perot long cavity geometry; b) micro mirror fabrication procedure c) optical microscope image of the zoom section.
Fig. 2
Fig. 2 a) Optical micrograph of the top view of the microfluidic laser; b) photo showing the fabricated chip and the cavity with the laser dye.
Fig. 3
Fig. 3 Experimental set-up for optofluidic micro laser analysis.
Fig. 4
Fig. 4 Typical emission spectrum increasing the pump power. Data correspond to dye concentration of 10−4 mol/l.
Fig. 5
Fig. 5 Full width half maximum of the stimulated emission bandwidth vs pumping energy density. Data correspond to dye concentration of 10−4 mol/l.
Fig. 6
Fig. 6 The laser emission spectrum for the same device above threshold for dye concentration of 5∙10−3 mol/l.
Fig. 7
Fig. 7 Laser output vs energy density of the pumping pulse for dye concentration of 5∙10−3 mol/l.

Metrics