Abstract

We describe generation of 1.1 W of 257 nm emission by frequency quadrupling the 1030 nm emission from a compact passively Q-switched Yb:YAG laser. The laser utilized a volume Bragg grating to achieve a 0.1 nm linewidth required for UV-Raman spectroscopic applications, generated 100 kW peak power, 250 μJ pulses and 3.6 W of average power at 1030 nm. Fourth harmonic generation (FHG) was carried out using a 10 mm lithium triborate (LBO) crystal to generate 515 nm second harmonic with 70% conversion efficiency, followed by a 7 mm beta-barium borate (BBO) crystal to generate 257 nm fourth harmonic with 45% efficiency, resulting in an overall nonlinear conversion efficiency of 31%. Far-field and near-field of the FHG emission were characterized.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
5.6 kW peak power, nanosecond pulses at 274 nm from a frequency quadrupled Yb-doped fiber MOPA

Jing He, Di Lin, Lin Xu, Martynas Beresna, Michalis N. Zervas, Shaif-ul Alam, and Gilberto Brambilla
Opt. Express 26(6) 6554-6559 (2018)

An all solid-state UV source based on a frequency quadrupled, passively Q-switched 946 nm laser

Sandra Johansson, Stefan Bjurshagen, Carlota Canalias, Valdas Pasiskevicius, Fredrik Laurell, and Ralf Koch
Opt. Express 15(2) 449-458 (2007)

Passively Q-switched dual-wavelength green laser with an Yb:YAG/Cr4+:YAG/YAG composite crystal

Pingping Ye, Siqi Zhu, Zhen Li, Hao Yin, Peixiong Zhang, Shenhe Fu, and Zhenqiang Chen
Opt. Express 25(5) 5179-5185 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. D. Tuschel, A. Mikhonin, B. E. Lemoff, and S. A. Asher, “Deep ultraviolet resonance Raman excitation enables explosives detection,” Appl. Spectrosc. 64(4), 425–432 (2010).
    [Crossref] [PubMed]
  2. L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
    [Crossref]
  3. L. Goldberg and D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20(10), 1145–1147 (1995).
    [Crossref] [PubMed]
  4. J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.
  5. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, and K. Yoshizawa, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25(1), 58–60 (2000).
    [Crossref]
  6. A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
    [Crossref]
  7. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
    [Crossref]
  8. X. Dél’len, L. Deyra, A. Benoit, M. Hanna, F. Balembois, B. Cocquelin, D. Sangla, F. Salin, J. Didierjean, and P. Georges, “Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257 nm,” Opt. Lett. 38(6), 995–997 (2013).
    [Crossref]
  9. L. Deyra, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd:YAG oscillator,” Opt. Lett. 39(8), 2236–2239 (2014).
    [Crossref] [PubMed]
  10. K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
    [Crossref]
  11. B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
    [Crossref]
  12. D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
    [Crossref]
  13. F. Di Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1ns pulses of 410, 160, and 190kW peak-power at 531, 354, and 265nm wavelength,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper ME3.
  14. A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
    [Crossref]
  15. S. C. Kumar, J. Canals Casals, J. Wei, and M. Ebrahim-Zadeh, “High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm,” Opt. Express 23(21), 28091–28103 (2015).
    [Crossref] [PubMed]
  16. C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
    [Crossref]
  17. M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” Proc. SPIE 6739, Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, 673903 (2007).
    [Crossref]
  18. V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).
  19. M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).
  20. J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).
  21. J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
    [Crossref]
  22. W. Jiang, Y. Liu, W. Chen, S. Zhu, Z. Chen, G. Zhang, Y. Chen, and Z. Chen, “Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched at 1030nm,” Appl. Opt. 54(7), 1834–1838 (2015).
    [Crossref]
  23. K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
    [Crossref]
  24. T. Y. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
    [Crossref] [PubMed]
  25. N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
    [Crossref]
  26. SNLO software, : see the website http://www.as-photonics.com/snlo .

2016 (3)

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

2015 (4)

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

W. Jiang, Y. Liu, W. Chen, S. Zhu, Z. Chen, G. Zhang, Y. Chen, and Z. Chen, “Composite Yb:YAG/Cr4+:YAG/YAG crystal passively Q-switched at 1030nm,” Appl. Opt. 54(7), 1834–1838 (2015).
[Crossref]

S. C. Kumar, J. Canals Casals, J. Wei, and M. Ebrahim-Zadeh, “High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm,” Opt. Express 23(21), 28091–28103 (2015).
[Crossref] [PubMed]

2014 (2)

L. Deyra, I. Martial, J. Didierjean, F. Balembois, and P. Georges, “Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd:YAG oscillator,” Opt. Lett. 39(8), 2236–2239 (2014).
[Crossref] [PubMed]

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

2013 (2)

2010 (1)

2009 (1)

A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
[Crossref]

2008 (2)

N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
[Crossref]

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

2007 (2)

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” Proc. SPIE 6739, Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, 673903 (2007).
[Crossref]

2006 (1)

2002 (1)

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

2000 (1)

1995 (1)

Ahler, S.

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

Asher, S. A.

Balembois, F.

Banta, M.

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

Bass, M.

Benoit, A.

Bhandari, R.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Brooks, C. D.

F. Di Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1ns pulses of 410, 160, and 190kW peak-power at 531, 354, and 265nm wavelength,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper ME3.

Butterworth, S.

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

Canals Casals, J.

Chang, C.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Chen, W.

Chen, Y.

Chen, Z.

Chung, T. Y.

Cocquelin, B.

Cole, B.

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

Cook, C.

J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.

Daneu, J. L.

J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.

Dél’len, X.

Deyra, L.

Di Teodoro, F.

F. Di Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1ns pulses of 410, 160, and 190kW peak-power at 531, 354, and 265nm wavelength,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper ME3.

Didierjean, J.

Diening, A.

A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
[Crossref]

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

DiLazaro, T.

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

Dill, C.

J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.

Ebrahim-Zadeh, M.

Fleger, Y.

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

Fromzel, V. A.

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

Fujikawa, S.

Gaft, M.

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” Proc. SPIE 6739, Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, 673903 (2007).
[Crossref]

Georges, P.

Glebov, L.

N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
[Crossref]

T. Y. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

Goldberg, L.

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

L. Goldberg and D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20(10), 1145–1147 (1995).
[Crossref] [PubMed]

Hanna, M.

Hays, A. D.

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

Hong, K.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Hwang, I. H.

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

Jabczynski, J. K.

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

Jelinkova, H.

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

Jiang, W.

Kartner, F. X.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Kaskow, M.

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

Kliner, D. A. V.

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

L. Goldberg and D. A. V. Kliner, “Deep-UV generation by frequency quadrupling of a high-power GaAlAs semiconductor laser,” Opt. Lett. 20(10), 1145–1147 (1995).
[Crossref] [PubMed]

Kojima, T.

Konno, S.

Koplow, J. P.

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

Krogen, P.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Kumar, S. C.

Lai, C.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Lemoff, B. E.

Liang, J.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Liu, Y.

Martial, I.

McIntosh, C.

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

McLean, S.

A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
[Crossref]

Mehla, O.

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

Mikhonin, A.

Moore, S. W.

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

Moses, J.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Nagli, L.

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” Proc. SPIE 6739, Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, 673903 (2007).
[Crossref]

Nejezchleb, K.

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

Prasad, C. R.

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

Rapaport, A.

Richardson, M.

Rosenbluh, M.

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

Salin, F.

Sangla, D.

Schwemmer, G.

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

Seelert, W.

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

Skoda, V.

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

Smirnov, V.

N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
[Crossref]

T. Y. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
[Crossref] [PubMed]

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

Smith, A. V.

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

Starodoumov, A.

A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
[Crossref]

Stein, G.

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

Sulc, J.

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

Taira, T.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Teodoro, F.

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

Tuschel, D. D.

Vorobiev, N.

N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
[Crossref]

Wei, J.

Yakshin, M. A.

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

Yasui, K.

Yoshizawa, K.

Zayhowski, J. J.

J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.

Zhang, G.

Zhu, S.

Appl. Opt. (1)

Appl. Spectrosc. (1)

Opt. Commun. (1)

D. A. V. Kliner, F. Teodoro, J. P. Koplow, S. W. Moore, and A. V. Smith, “Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifier,” Opt. Commun. 210(3–6), 393–398 (2002).
[Crossref]

Opt. Eng. (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30(11), 1747–1754 (2008).
[Crossref]

Proc. SPIE (10)

K. Hong, C. Chang, P. Krogen, J. Liang, G. Stein, J. Moses, C. Lai, and F. X. Kartner, “Multi-mJ, KHz picosecond deep UV source based on a frequency-quadrupled cryogenic Yb:YAG laser,” Proc. SPIE 9513, 95130U (2015).
[Crossref]

B. Cole, C. McIntosh, A. D. Hays, T. Dilazaro, and L. Goldberg, “UV by the fourth harmonic generation of compact side-pumped Yb:YAG laser emission,” Proc. SPIE.  9726, 972623 (2016).
[Crossref]

A. Diening, O. Mehla, S. Ahler, S. Butterworth, and W. Seelert, “Frequency-tripled and quadrupled air-cooled modelocked Nd:YVO4 laser with greater 6W average power,” Proc. SPIE 6451, Solid State Lasers XVI: Technology and Devices, 645107 (2007).
[Crossref]

C. McIntosh, L. Goldberg, B. Cole, T. DiLazaro, and A. D. Hays, “Compact frequency-quadrupled pulsed 1030nm fiber laser,” Proc. SPIE.  9728, 97283E (2016).
[Crossref]

M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” Proc. SPIE 6739, Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, 673903 (2007).
[Crossref]

N. Vorobiev, V. Smirnov, and L. Glebov, “Single-frequency-mode Q-switched Nd:YAG laser controlled by volume Bragg gratings,” Proc. SPIE 6952, 69520G (2008).
[Crossref]

A. Diening, S. McLean, and A. Starodoumov, “High average power 258nm generation in a nanosecond fiber MOPA,” Proc. SPIE 7195, 71950H (2009).
[Crossref]

K. Nejezchleb, J. Sulc, H. Jelinkova, and V. Skoda, “Microchip laser based on Yb:YAG/V:YAG monolith crystal,” Proc. SPIE 9726, 97261H (2016).
[Crossref]

J. Sulc, M. Kaskow, H. Jelinkova, and J. K. Jabczynski, “Diode pumped Yb-lasers Q-switched by V:YAG saturable absorber,” Proc. SPIE 9441, 944101 (2014).

J. Sulc, H. Jelinkova, K. Nejezchleb, and V. Skoda, “Generation of 1.6 ns Q-switched pulses based on Yb:YAG/Cr:YAG microchip laser,” Proc. SPIE 9513, 951317 (2015).
[Crossref]

Other (5)

SNLO software, : see the website http://www.as-photonics.com/snlo .

V. A. Fromzel, M. A. Yakshin, C. R. Prasad, G. Schwemmer, V. Smirnov, and L. Glebov, “Compact, 1W, 10 kHz, Q-switched, diode-pumped Yb:YAG laser with volume Bragg grating for LIDAR applications,” JTuD9, Conference on Lasers and Electro-Optics (2009).

M. A. Yakshin, C. R. Prasad, G. Schwemmer, M. Banta, and I. H. Hwang, “Compact, diode-pumped Yb:YAG laser with combination acousto-optic and passive Q-switch for LIDAR applications,” JWA46, Conference on Lasers and Electro-Optics (2011).

F. Di Teodoro and C. D. Brooks, “Harmonic generation of an Yb-doped photonic-crystal fiber amplifier to obtain 1ns pulses of 410, 160, and 190kW peak-power at 531, 354, and 265nm wavelength,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper ME3.

J. J. Zayhowski, C. Dill, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), paper TuC1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Configuration of the Q-switched Yb:YAG laser and FHG.
Fig. 2
Fig. 2 CW and Q-switched output power and optical efficiency of the Yb:YAG laser with T0=89% Cr:YAG.
Fig. 3
Fig. 3 Q-switched laser pulse energy and PRF.
Fig. 4
Fig. 4 Emission spectra for Q-switched laser using a VBG (blue) and a conventional output coupler (red).
Fig. 5
Fig. 5 Intensity distribution and center intensity profiles of 515 nm light entering BBO crystal.
Fig. 6
Fig. 6 Intensity distribution of 257 nm light at the output face of BBO crystal.
Fig. 7
Fig. 7 Far-field angular distribution of 257 nm beam, measured with a 1m focal length lens.
Fig. 8
Fig. 8 1030 nm, 515 nm, and 257 nm powers vs. pump power incident on Yb:YAG.
Fig. 9
Fig. 9 Frequency conversion efficiencies vs. pump power.
Fig. 10
Fig. 10 Q-switched laser pulse shape at 1030 nm, 515 nm and 257 nm. The insert shows the 14.5 kHz (1030 nm) pulse train under maximum pump power conditions.

Metrics