Abstract

A polarization-mediated color filter featuring a high angular tolerance is proposed incorporating a metal-dielectric-metal etalon based on a nanostructured cavity, where a one-dimensional subwavelength grating of a high refractive index is embedded in a base layer of a low refractive index. The aim of the nanostructured cavity is mimicking of the equivalent birefringent medium whereby different effective refractive indices are exhibited depending on the incident polarization. As the transmission peak of the etalon is effectively tuned through the tailoring of the refractive index of the cavity, the proposed filter is capable of providing a continuum of vivid output colors through a dynamic control of the polarization. The effective medium theory is chiefly applied for an investigation of the birefringent characteristics of the nanostructured cavity. A dielectric overlay that acts as an anti-reflection coating is specifically adopted for the etalon to enhance the transmission efficiency. The proposed polarization-tuned filter evidently provides a high transmission of ~71% and a high angular tolerance of ~35° in conjunction with a wide polarization-mediated color tuning.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

10 August 2016: A correction was made to the author affiliations.


OSA Recommended Articles
Angle-tolerant linear variable color filter based on a tapered etalon

Peng Ji, Chul-Soon Park, Song Gao, Sang-Shin Lee, and Duk-Yong Choi
Opt. Express 25(3) 2153-2161 (2017)

Polarization-dependent wide-angle color filter incorporating meta-dielectric nanostructures

Shangliang Wu, Yan Ye, Minghui Luo, and Linsen Chen
Appl. Opt. 57(14) 3674-3678 (2018)

Uniformly thick tri-color filters capitalizing on an etalon with a nanostructured cavity

Wenjing Yue, Sang-Shin Lee, Eun-Soo Kim, and Byung-Gook Lee
Appl. Opt. 54(18) 5866-5871 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
    [Crossref]
  2. C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
    [Crossref]
  3. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  4. H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
    [Crossref]
  5. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  6. F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
    [Crossref] [PubMed]
  7. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
    [Crossref] [PubMed]
  8. C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
    [Crossref] [PubMed]
  9. W. Yue, Y. Li, C. Wang, Z. Yao, S. S. Lee, and N. Y. Kim, “Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation,” Opt. Express 23(21), 27474–27483 (2015).
    [Crossref] [PubMed]
  10. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  11. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [Crossref]
  12. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
    [Crossref] [PubMed]
  13. C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
    [Crossref] [PubMed]
  14. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [Crossref] [PubMed]
  15. M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
    [Crossref] [PubMed]
  16. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  17. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  18. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  19. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  20. V. Raj Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
    [Crossref] [PubMed]
  21. Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  22. K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
    [Crossref] [PubMed]
  23. W. Yue, S. S. Lee, E. S. Kim, and B. G. Lee, “Uniformly thick tri-color filters capitalizing on an etalon with a nanostructured cavity,” Appl. Opt. 54(18), 5866–5871 (2015).
    [Crossref] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), Ch. 7 and 14.
  25. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18(2), 1695–1703 (2010).
    [Crossref] [PubMed]
  26. D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
    [Crossref] [PubMed]
  27. Lumerical Solutions Inc, “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd/ .
  28. Thin Film Center Inc, “Essential MacLeod,” http://www.thinfilmcenter.com/essential.html .
  29. K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
    [Crossref] [PubMed]

2016 (1)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (7)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

2013 (3)

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

2012 (6)

C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[Crossref] [PubMed]

C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
[Crossref]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

2011 (1)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

2010 (1)

2009 (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

2001 (1)

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Chen, Q.

Chen, Q. W.

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Cheng, F.

Cheng, K. T.

C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
[Crossref]

Choi, D. Y.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

V. Raj Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Collins, S.

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Crozier, K. B.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Cumming, D. R. S.

Czaplewski, D.

Drysdale, T. D.

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Fuh, A. Y. G.

C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
[Crossref]

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Gao, J.

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Grant, J.

Grätzel, M.

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guo, J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Guo, L. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hollowell, A. E.

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Hu, H.

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Hu, X. Y.

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Huard, C. M.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Jin, G.

Kang, G.

Khaleque, T.

Kim, E. S.

W. Yue, S. S. Lee, E. S. Kim, and B. G. Lee, “Uniformly thick tri-color filters capitalizing on an etalon with a nanostructured cavity,” Appl. Opt. 54(18), 5866–5871 (2015).
[Crossref] [PubMed]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

V. Raj Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref] [PubMed]

Kim, N. Y.

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Lee, B. G.

Lee, J. Y.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Lee, S. S.

Levy, U.

Li, Y.

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Liu, C. K.

C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
[Crossref]

Magnusson, R.

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Ohana, D.

Park, C. H.

Park, C. S.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Qiu, C. W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Raj Shrestha, V.

V. Raj Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref] [PubMed]

Roberts, A. S.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Rosenmann, D.

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Seo, S.

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Shin, Y. J.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Shrestha, V. R.

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Stan, L.

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Tan, Q.

Tan, S. J.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Tang, J.

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Uddin, M. J.

Walls, K.

Wang, C.

Wang, X.

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wu, Y. K. R.

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Yang, J. K. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Yang, X.

Yang, Y.

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Yao, Z.

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yoon, Y. T.

Yue, W.

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Zhang, C.

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Zhou, X. H.

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

ACS Nano (1)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

K. T. Lee, S. Seo, J. Y. Lee, and L. J. Guo, “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater. 26(36), 6324–6328 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. Guo, C. M. Huard, Y. Yang, Y. J. Shin, K. T. Lee, and L. J. Guo, “ITO-free, compact, color liquid crystal devices using integrated structural color filters and graphene electrodes,” Adv. Opt. Mater. 2(5), 435–441 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

J. Disp. Technol. (1)

C. K. Liu, K. T. Cheng, and A. Y. G. Fuh, “Designs of high color purity RGB color filter for liquid crystal displays applications using Fabry-Perot etalons,” J. Disp. Technol. 8(3), 174–178 (2012).
[Crossref]

J. Mater. Chem. (1)

H. Hu, Q. W. Chen, J. Tang, X. Y. Hu, and X. H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Nano Lett. (4)

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Nature (2)

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Express (8)

G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18(2), 1695–1703 (2010).
[Crossref] [PubMed]

D. Ohana and U. Levy, “Mode conversion based on dielectric metamaterial in silicon,” Opt. Express 22(22), 27617–27631 (2014).
[Crossref] [PubMed]

K. Walls, Q. Chen, J. Grant, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Narrowband multispectral filter set for visible band,” Opt. Express 20(20), 21917–21923 (2012).
[Crossref] [PubMed]

W. Yue, Y. Li, C. Wang, Z. Yao, S. S. Lee, and N. Y. Kim, “Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation,” Opt. Express 23(21), 27474–27483 (2015).
[Crossref] [PubMed]

F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
[Crossref] [PubMed]

C. H. Park, Y. T. Yoon, and S. S. Lee, “Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure,” Opt. Express 20(21), 23769–23777 (2012).
[Crossref] [PubMed]

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

Sci. Rep. (4)

V. Raj Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array,” Sci. Rep. 5, 12450 (2015).
[Crossref] [PubMed]

Y. K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay,” Sci. Rep. 5, 8467 (2015).
[Crossref] [PubMed]

Other (3)

Lumerical Solutions Inc, “FDTD Solutions,” https://www.lumerical.com/tcad-products/fdtd/ .

Thin Film Center Inc, “Essential MacLeod,” http://www.thinfilmcenter.com/essential.html .

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), Ch. 7 and 14.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the proposed polarization-mediated color filter that is capitalizing on a nanostructured FP cavity incorporating a 1D SWG. The filter gives birth to color outputs of blue and green in accordance with the incident TM and TE polarizations, respectively.
Fig. 2
Fig. 2 (a) A nanostructured cavity composed of alternating low-index (n1) and high-index (n2) layers is approximated as a birefringent medium, which is characterized by the effective refractive indices of nTM and nTE for the TM and TE polarizations, respectively, according to the EMT. The effective indices of nTM and nTE are derived from the second-order EMT as a function of (b) the wavelength under a fixed grating width of W = 100 nm, and (c) the grating width at the specific wavelength of 550 nm.
Fig. 3
Fig. 3 (a) Configurations of an actual case with a nanostructured cavity with a grating width of W and a modeled case with a birefringent cavity that exhibits the effective indices of nTM and nTE. The thicknesses of the Ag mirror, the PMMA cavity, and the TiO2 overlay are set as 25 nm, 240 nm, and 60 nm, respectively. The grating thicknesses for the actual case and the modeled birefringent medium are both 192 nm, and the grating pitch for the actual case is fixed at 150 nm. (b) Polarization-dependent transmission spectra with different grating widths of W = 50 nm, W = 100 nm, and W = 120 nm.
Fig. 4
Fig. 4 (a) Transmission spectra of the proposed polarization-tuned color filter with grating widths of W = 50 nm, W = 100 nm, and W = 120 nm for a constant grating pitch of 150 nm, when the incident polarization varies from φ = 0° to 90°. (b) Corresponding chromaticity coordinates in the CIE 1931 chromaticity diagram.
Fig. 5
Fig. 5 Contour map of polarization-sensitive transmission spectra for grating widths of W = 50 nm, W = 100 nm, and W = 120 nm, and a constant grating pitch of 150 nm, with respect to the angle of incidence.
Fig. 6
Fig. 6 (a) Light propagation in a typical filter of a DMDM configuration. The thicknesses of the Ag mirror, the cavity with a refractive index of nc = 2.09, and the TiO2 overlay are set as 25 nm, 240 nm, and 60 nm, respectively. (b) Total phase shift ϕ at a resonance wavelength of λ = 599 nm for a typical filter when the propagation angle inside the cavity (θt) increases from 0° to 16°.
Fig. 7
Fig. 7 Polarization-dependent transmission spectra of the color filter with and without a 60-nm thick TiO2 overlay. The color filter with a grating width and pitch of 100 nm and 150 nm has been respectively investigated.
Fig. 8
Fig. 8 (a) Polarization-dependent transmission spectra of the color filter with different grating widths of W = 50 nm, W = 100 nm, and W = 120 nm and a constant grating pitch of P = 100 nm that depend on the dispersion of TiO2. (b) Corresponding 1931 CIE color coordinates.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n T E ( 0 ) = ( W n 2 2 + ( P W ) n 1 2 ) / P n T E ( 2 ) = ( n T E ( 0 ) ) 2 + [ π W ( P W ) ( n 2 2 n 1 2 ) ] 2 / 3 λ 2 P 2 n T M ( 0 ) = P n 2 2 n 1 2 / [ W n 1 2 + ( P W ) n 2 2 ] n T M ( 2 ) = ( n T E ( 0 ) ) 2 + 1 3 [ π W ( P W ) λ P ( 1 n 2 2 1 n 1 2 ) n T E ( 0 ) ( n T M ( 0 ) ) 3 ] 2

Metrics