Abstract

This paper presents an all fiber high power picosecond laser at 1016 nm in master oscillator power amplifier (MOPA) configuration. A direct amplification of this seed source encounters obvious gain competition with amplified spontaneous emission (ASE) at ~1030 nm, leading to a seriously reduced amplification efficiency. To suppress the ASE and improve the amplification efficiency, we experimentally investigate the influence of the gain fiber length and the residual ASE on the perforemance of the 1016 nm amplifier. The optimized 1016 nm MOPA laser exhibits an average power of 50 W and an optical conversion efficiency of 53%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
100 W all fiber picosecond MOPA laser

Sheng-Ping Chen, Hong-Wei Chen, Jing Hou, and Ze-Jin Liu
Opt. Express 17(26) 24008-24012 (2009)

10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm

Changsheng Yang, Shanhui Xu, Shupei Mo, Can Li, Zhouming Feng, Dongdan Chen, Zhongmin Yang, and Zhonghong Jiang
Opt. Express 21(10) 12546-12551 (2013)

157 W all-fiber high-power picosecond laser

Rui Song, Jing Hou, Shengping Chen, Weiqiang Yang, and Qisheng Lu
Appl. Opt. 51(13) 2497-2500 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10kW,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CThA3.
    [Crossref]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [Crossref]
  3. C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
    [Crossref]
  4. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38(9), 1588–1590 (2013).
    [Crossref] [PubMed]
  5. J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, “High-power single-frequency 1014.8 nm Yb-doped fiber amplifier working at room temperature,” Appl. Opt. 53(22), 4972–4977 (2014).
    [Crossref] [PubMed]
  6. P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
    [Crossref]
  7. R. Steinborn, A. Koglbauer, P. Bachor, T. Diehl, D. Kolbe, M. Stappel, and J. Walz, “A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm,” Opt. Express 21(19), 22693–22698 (2013).
    [Crossref] [PubMed]
  8. L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
    [Crossref] [PubMed]
  9. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  10. A. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
    [Crossref]
  11. Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.
  12. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
    [Crossref] [PubMed]
  13. C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
    [Crossref]
  14. J. Wang, G. Chen, L. Zhang, J. Hu, J. Li, B. He, J. Chen, X. Gu, J. Zhou, and Y. Feng, “High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber,” Appl. Opt. 51(29), 7130–7133 (2012).
    [Crossref] [PubMed]
  15. D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” in Lasers and Applications in Science and Engineering (International Society for Optics and Photonics, 2004), pp. 16–28.
  16. H. Hemmati, Deep Space Optical Communications (John Wiley & Sons, 2006).
  17. D. Engin, W. Lu, F. Kimpel, and S. Gupta, “Short-wavelength (1010-1030nm) Yb-fiber-MOPA based multi-aperture high-power uplink laser beacons for space communication,” in SPIE LASE (International Society for Optics and Photonics, 2012), pp. 82460K–82469.
  18. D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” in SPIE Defense + Security (International Society for Optics and Photonics, 2015), pp. 94660V–94612.
  19. W. Farr, “Technology development for high efficiency optical communications,” in Aerospace Conference, 2012 IEEE (IEEE, 2012), pp. 1–8.
    [Crossref]
  20. H. Yang, “High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation,” (Massachusetts Institute of Technology, 2014).
  21. Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, and F. X. Kaertner, “87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: YLF amplifier,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. SM4Q. 5.
  22. M. Jiang, P. Zhou, H. Xiao, R. Tao, and X. Wang, “Pulsed Yb3+-doped fiber laser operating at 1011 nm by intra-cavity phase modulation,” Appl. Opt. 53(10), 1990–1993 (2014).
    [Crossref] [PubMed]
  23. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
    [Crossref] [PubMed]
  24. Z. Qin, G. Xie, H. Zhang, C. Zhao, P. Yuan, S. Wen, and L. Qian, “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express 23(19), 24713–24718 (2015).
    [Crossref] [PubMed]
  25. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
    [Crossref] [PubMed]
  26. H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
    [Crossref]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2010).
  28. S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
    [Crossref] [PubMed]

2015 (4)

2014 (3)

2013 (2)

2012 (2)

J. Wang, G. Chen, L. Zhang, J. Hu, J. Li, B. He, J. Chen, X. Gu, J. Zhou, and Y. Feng, “High-efficiency fiber laser at 1018 nm using Yb-doped phosphosilicate fiber,” Appl. Opt. 51(29), 7130–7133 (2012).
[Crossref] [PubMed]

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

2011 (2)

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
[Crossref]

2009 (1)

2007 (1)

A. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

1997 (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Bachor, P.

Bize, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Buchwald, M.

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Chen, D.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Chen, G.

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

Chen, H. W.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

Chen, H.-W.

Chen, J.

Chen, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Chen, S. P.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

Chen, S.-P.

Di Lieto, A.

Diehl, T.

Edwards, B.

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

Edwards, B. C.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Epstein, R.

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

Epstein, R. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Feng, Y.

Feng, Z.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Gosnell, T.

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

Gosnell, T. R.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Gu, X.

Guo, C.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

He, B.

Hou, J.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

S.-P. Chen, H.-W. Chen, J. Hou, and Z.-J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

Hu, J.

Huang, L.

Jiang, M.

Jiang, Z.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Ke, W.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

Koglbauer, A.

Kolbe, D.

Kurkov, A.

A. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

Le Coq, Y.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Lei, Y.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

Leng, J.

Li, C.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Li, J.

Li, T.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

Lin, R.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

Lin, W.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Liu, A.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

Liu, H.

Liu, K.

Liu, Z.-J.

Lu, Q. S.

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

Ma, Y.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

McFerran, J. J.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Mejri, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Melgaard, S. D.

Mo, S.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Mungan, C.

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Qian, L.

Qin, Z.

Ruan, S.

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Seletskiy, D. V.

Sheik-Bahae, M.

Siol, S.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
[Crossref]

Stappel, M.

Steinborn, R.

Sun, Y.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

Tao, R.

Tonelli, M.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Villwock, P.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
[Crossref]

Walther, T.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
[Crossref]

Walz, J.

Wang, J.

Wang, X.

Wang, Y.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

Wen, S.

Wu, J.

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

Xiao, H.

Xie, G.

Xu, J.

Xu, S.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Xu, Z.

Yan, P.

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23(1), 154–164 (2015).
[Crossref] [PubMed]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Yang, C.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Yang, Q.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Yang, Z.

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Yi, L.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Yuan, P.

Zhang, H.

Zhang, L.

Zhao, C.

Zheng, Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Zhou, J.

Zhou, P.

Appl. Opt. (4)

Appl. Phys. B (1)

H. W. Chen, Y. Lei, S. P. Chen, J. Hou, and Q. S. Lu, “High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 m fiber core,” Appl. Phys. B 109(2), 233–238 (2012).
[Crossref]

Appl. Phys. Express (1)

C. Yang, S. Xu, Q. Yang, W. Lin, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “High-efficiency watt-level 1014 nm single-frequency laser based on short Yb-doped phosphate fiber amplifiers,” Appl. Phys. Express 7(6), 062702 (2014).
[Crossref]

Eur. Phys. J. D (1)

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D 65(1–2), 251–255 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fibre amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Laser Phys. Lett. (1)

A. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[Crossref]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

C. Mungan, M. Buchwald, B. Edwards, R. Epstein, and T. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[Crossref]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of Hg199 and determination of the magic wavelength for the ultraviolet S01↔P03 clock transition,” Phys. Rev. Lett. 106(7), 073005 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5, 8690 (2015).
[Crossref] [PubMed]

Other (10)

Y. Wang, W. Ke, Y. Sun, Y. Ma, T. Li, Y. Feng, and J. Wu, “Research of high brightness 1018 nm ytterbium doped fiber laser,” in XX International Symposium on High Power Laser Systems and Applications (International Society for Optics and Photonics, 2015), pp. 92551–92558.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2010).

M. O’Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power scaling of SM fiber lasers toward 10kW,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CThA3.
[Crossref]

D. M. Boroson, A. Biswas, and B. L. Edwards, “MLCD: overview of NASA’s Mars laser communications demonstration system,” in Lasers and Applications in Science and Engineering (International Society for Optics and Photonics, 2004), pp. 16–28.

H. Hemmati, Deep Space Optical Communications (John Wiley & Sons, 2006).

D. Engin, W. Lu, F. Kimpel, and S. Gupta, “Short-wavelength (1010-1030nm) Yb-fiber-MOPA based multi-aperture high-power uplink laser beacons for space communication,” in SPIE LASE (International Society for Optics and Photonics, 2012), pp. 82460K–82469.

D. Engin, J. Burton, I. Darab, F. Kimpel, and S. Gupta, “Yb-fiber-MOPA based high energy and average power uplink laser beacon for deep space communication operating under Nested PPM format,” in SPIE Defense + Security (International Society for Optics and Photonics, 2015), pp. 94660V–94612.

W. Farr, “Technology development for high efficiency optical communications,” in Aerospace Conference, 2012 IEEE (IEEE, 2012), pp. 1–8.
[Crossref]

H. Yang, “High energy femtosecond fiber laser at 1018 nm and high power Cherenkov radiation generation,” (Massachusetts Institute of Technology, 2014).

Y. Hua, W. Liu, M. Hemmer, L. E. Zapata, G. Zhou, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, and F. X. Kaertner, “87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: YLF amplifier,” in CLEO: Science and Innovations (Optical Society of America, 2016), pp. SM4Q. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the 1016 nm pulse fiber laser in four-stage MOPA configuration. (a) the SESAM mode-locked fiber laser as the master oscillator: YDF, Yb-doped fiber; WDM, wavelength-division multiplexer; FBG, fiber bragg grating; ISO, optical isolator; LD, 976 nm laser diode. (b) the MOPA configuration: OC, optical coupler; GDF, germanium-doped fiber. (c) the transmission spectrum of ASE filter.
Fig. 2
Fig. 2 Output characteristics of the SESAM mode-locked laser. (a) The shape of the single pulse and (inset) the output pulse train (span of 9 μs). (b) RF spectrum of the output pulses with a span of 60 kHz (1 Hz bandwidth) and (inset) 1 GHz (1 KHz bandwidth). (c) Optical spectrum with a span of 50 nm and (inset) 1.4 nm (with a resolution of 0.02 nm). (d) the output power versus the pump power.
Fig. 3
Fig. 3 The direct output and ASE-filtered output characteristics of AMP1. (a) Output power versus the pump power. (b) Optical spectrum (with a resolution of 0.05nm).
Fig. 4
Fig. 4 AMP2 performance dependence on the residual ASE in the incident signal with the pump power of 3.65 W and 2 m gain fiber. (a)The incident signal includes 0.1% ASE. (b)The incident signal is ASE-filtered.
Fig. 5
Fig. 5 AMP2 performance dependence on YDF length at the same pump level. (a)Output spectra. (b) Output power versus the pump power.
Fig. 6
Fig. 6 Output characteristics of AMP3. (a) The output spectra at different output power. (b) The linear scale of the spectrum at the maximum output power (with a resolution of 0.02 nm) and (inset) the enlarged spectrum at the wavelength range from 1009 nm to 1024 nm. (c) The total output power and 1016 nm light power versus the pump power. (d) The shape of the single pulse at the maximum output power.

Metrics