Abstract

Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images exhibit a strong increase in the level of TPL signals for films thicknesses 3–8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic fields due to multiple light scattering in random nanostructures that might eventually lead to white-light generation. Raman images exhibit increasing Raman signals when decreasing the film thickness from 12 to 6-nm and decreasing signal for the 3-nm-film. This feature correlates with the TPL observations indicating that highest FE is to be expected near the percolation threshold.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Label-free multi-color superlocalization of plasmonic emission within metallic nano-interstice using femtosecond chirp-manipulated four wave mixing

Chao-Yi Tai, Po-Wen Tang, Wen-Hsiang Yu, and Sheng Hsiung Chang
Opt. Express 23(25) 32113-32129 (2015)

Localized field enhancements in two-dimensional V-groove metal arrays

Jonas Beermann, Sergey M. Novikov, Thomas Søndergaard, Jens Rafaelsen, Kjeld Pedersen, and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 28(3) 372-378 (2011)

Characterization of localized field enhancements in laser fabricated gold needle nanostructures

Sergey M. Novikov, Andrey B. Evlyukhin, Arseniy I. Kuznetsov, Jonas Beermann, Boris N. Chichkov, and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 29(1) 185-190 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  3. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  6. E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
    [Crossref] [PubMed]
  7. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  8. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
    [Crossref] [PubMed]
  9. J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26(12), 2370 (2009).
    [Crossref]
  10. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11(7), 075004 (2009).
    [Crossref]
  11. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
    [Crossref]
  12. L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
    [Crossref]
  13. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
    [Crossref]
  14. T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
    [Crossref]
  15. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
    [Crossref] [PubMed]
  16. A. Balćytis, T. Tolenis, X. Wang, G. Seniutinas, R. Drazdys, P. R. Stoddart, and S. Juodkazis, “Percolation threshold gold films on columnar coatings: characterisation for SERS applications,” http://www arXiv:1603.08197 .
  17. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  18. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  19. A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
    [Crossref]
  20. J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
    [Crossref] [PubMed]
  21. M. Moskovits, “Imaging: Spot the hotspot,” Nature 469(7330), 307–308 (2011).
    [Crossref] [PubMed]
  22. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
    [Crossref]
  23. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
    [Crossref] [PubMed]
  24. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
    [Crossref] [PubMed]
  25. N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
    [Crossref] [PubMed]
  26. A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
    [Crossref]
  27. M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
    [Crossref] [PubMed]
  28. S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
    [Crossref]
  29. K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
    [Crossref] [PubMed]
  30. S. M. Novikov, A. B. Evlyukhin, A. I. Kuznetsov, J. Beermann, B. N. Chichkov, and S. I. Bozhevolnyi, “Characterization of localized field enhancements in laser fabricated gold needle nanostructures,” J. Opt. Soc. Am. B 29(1), 185–190 (2012).
    [Crossref]
  31. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [Crossref]
  32. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [Crossref] [PubMed]
  33. J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [Crossref] [PubMed]
  34. S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
    [Crossref]
  35. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  36. M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
    [Crossref]
  37. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
    [Crossref] [PubMed]
  38. A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
    [Crossref] [PubMed]
  39. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  40. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  41. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
    [Crossref] [PubMed]

2016 (1)

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

2015 (3)

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

2014 (3)

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
[Crossref]

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

2012 (6)

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

S. M. Novikov, A. B. Evlyukhin, A. I. Kuznetsov, J. Beermann, B. N. Chichkov, and S. I. Bozhevolnyi, “Characterization of localized field enhancements in laser fabricated gold needle nanostructures,” J. Opt. Soc. Am. B 29(1), 185–190 (2012).
[Crossref]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

2011 (3)

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

M. Moskovits, “Imaging: Spot the hotspot,” Nature 469(7330), 307–308 (2011).
[Crossref] [PubMed]

2010 (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (4)

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[Crossref]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11(7), 075004 (2009).
[Crossref]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26(12), 2370 (2009).
[Crossref]

2008 (4)

J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

2007 (3)

S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2006 (2)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

2005 (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2001 (1)

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

2000 (1)

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[Crossref]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

Abbas, A.

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

Albrektsen, O.

Alvarez-Puebla, R. A.

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Asger Mortensen, N.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

Banerjee, K.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beermann, J.

Berini, B.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Berrier, A.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Boccara, A. C.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Böhme, R.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Boltasseva, A.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[Crossref] [PubMed]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

S. M. Novikov, A. B. Evlyukhin, A. I. Kuznetsov, J. Beermann, B. N. Chichkov, and S. I. Bozhevolnyi, “Characterization of localized field enhancements in laser fabricated gold needle nanostructures,” J. Opt. Soc. Am. B 29(1), 185–190 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11(7), 075004 (2009).
[Crossref]

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26(12), 2370 (2009).
[Crossref]

J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[Crossref] [PubMed]

Bragg, W. D.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Buil, S.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Camden, J. P.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

Cao, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

Castro-Lopez, M.

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

Chichkov, B. N.

Cialla, D.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Dieringer, J. A.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

Drachev, V. P.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Dressel, M.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Ducourtieux, S.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Eichelbaum, M.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Evlyukhin, A. B.

S. M. Novikov, A. B. Evlyukhin, A. I. Kuznetsov, J. Beermann, B. N. Chichkov, and S. I. Bozhevolnyi, “Characterization of localized field enhancements in laser fabricated gold needle nanostructures,” J. Opt. Soc. Am. B 29(1), 185–190 (2012).
[Crossref]

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Gadenne, P.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Gaio, M.

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

Gandra, N.

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

Genov, D. A.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

Ginzburg, P.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Gompf, B.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Gre’sillon, S.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Huang, J.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Ibrahim, H.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jauho, A.-P.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Juodkazis, S.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Kinkhabwala, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Krasavin, A. V.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Krishnamoorthy, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

Krishnan, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

Lal, S.

S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Langille, M. R.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Leosson, K.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11(7), 075004 (2009).
[Crossref]

Link, S.

S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Liz-Marzán, L. M.

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
[Crossref]

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Marks, L. D.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

März, A.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Masiello, D. J.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Mirkin, C. A.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Misawa, H.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Mizeikis, V.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

Mortensen, N. A.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Moskovits, M.

M. Moskovits, “Imaging: Spot the hotspot,” Nature 469(7330), 307–308 (2011).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nielsen, M. G.

Noda, S.

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[Crossref]

Noh, H.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

Novikov, S. M.

Oates, T. W. H.

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[Crossref]

Obelleiro, F.

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pérez-Juste, J.

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

Peterseim, T.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Podolskiy, V. A.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Popp, J.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Rademann, K.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

Radko, I. P.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

Raza, S.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Renger, J.

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

Ringe, E.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Rivoal, J. C.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Rodríguez-Lorenzo, L.

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

Romo-Herrera, J. M.

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

Safonov, V. P.

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Sapienza, R.

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

Sarychev, A. K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[Crossref]

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Schatz, G. C.

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

Schmidt, B. E.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

Schmitt, M.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Seal, K.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[Crossref]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Shiohara, A.

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
[Crossref]

Singamaneni, S.

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

Sohn, K.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Solís, D. M.

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

Søndergaard, T.

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

J. Beermann, S. M. Novikov, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[Crossref] [PubMed]

Sugime, H.

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Taboada, J. M.

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

Theil, F.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Thoniyot, P.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

Tian, L.

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

Toscano, G.

Ueno, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Van Duyne, R. P.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

van Hulst, N.

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

Volkov, V. S.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

Wang, Y.

A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
[Crossref]

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Weber, K.

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wubs, M.

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20(4), 4176–4188 (2012).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Yap, F. L.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

Ying, Z. C.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

Zhang, J.

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

Zhang, X.

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zuani, S. D.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

ACS Nano (1)

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6(3), 2056–2070 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon photoluminescence at Visible Wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Anal. Bioanal. Chem. (1)

D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Anal. Bioanal. Chem. 403(1), 27–54 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Faraday Discuss. (1)

M. Gaio, M. Castro-Lopez, J. Renger, N. van Hulst, and R. Sapienza, “Percolating plasmonic networks for light emission control,” Faraday Discuss. 178, 237–252 (2015).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots,” J. Am. Chem. Soc. 130(38), 12616–12617 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124(6), 061101 (2006).
[Crossref] [PubMed]

J. Mater. Chem. (1)

L. Rodríguez-Lorenzo, J. M. Romo-Herrera, J. Pérez-Juste, R. A. Alvarez-Puebla, and L. M. Liz-Marzán, “Reshaping and LSPR tuning of Au nanostars in presence of CTAB,” J. Mater. Chem. 21(31), 11544–11549 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A, Pure Appl. Opt. 11(7), 075004 (2009).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Photochem. Photobiol. Chem. (1)

A. Shiohara, Y. Wang, and L. M. Liz-Marzán, “Recent approaches toward creation of hot spots for SERS detection,” J. Photochem. Photobiol. Chem. 21, 2–25 (2014).
[Crossref]

J. Phys. Chem. C (3)

A. Shiohara, S. M. Novikov, D. M. Solís, J. M. Taboada, F. Obelleiro, and L. M. Liz-Marzán, “Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters,” J. Phys. Chem. C 119(20), 10836–10843 (2015).
[Crossref]

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[Crossref]

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne, and L. D. Marks, “Plasmon length: an universal parameter to describe the size effects in gold nanoparticles,” J. Phys. Chem. Lett. 3(11), 1479–1483 (2012).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, “Nonlocal optical response in metallic nanostructures,” J. Phys. Condens. Matter 27(18), 183204 (2015).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photonics Rev. 3(6), 575–590 (2009).
[Crossref]

Nano Lett. (1)

N. Gandra, A. Abbas, L. Tian, and S. Singamaneni, “Plasmonic Planet-Satellite Analogues: Hierarchical Self-Assembly of Gold Nanostructures,” Nano Lett. 12(5), 2645–2651 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[Crossref]

Nat. Commun. (2)

A. V. Krasavin, P. Ginzburg, G. A. Wurtz, and A. V. Zayats, “Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures,” Nat. Commun. 7, 11497 (2016).
[Crossref] [PubMed]

N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

S. Link, S. Lal, and N. J. Halas, “Plasmonics: nanoscale optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Nature (1)

M. Moskovits, “Imaging: Spot the hotspot,” Nature 469(7330), 307–308 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rep. (1)

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[Crossref]

Phys. Rev. B (1)

S. Ducourtieux, V. A. Podolskiy, S. Gre’sillon, S. Buil, B. Berini, P. Gadenne, A. C. Boccara, J. C. Rivoal, W. D. Bragg, K. Banerjee, V. P. Safonov, V. P. Drachev, Z. C. Ying, A. K. Sarychev, and V. M. Shalaev, “Near-field optical studies of semicontinuous metal films,” Phys. Rev. B 64(16), 165403 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[Crossref]

K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films,” Phys. Rev. Lett. 97(20), 206103 (2006).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (2)

A. Balćytis, T. Tolenis, X. Wang, G. Seniutinas, R. Drazdys, P. R. Stoddart, and S. Juodkazis, “Percolation threshold gold films on columnar coatings: characterisation for SERS applications,” http://www arXiv:1603.08197 .

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SEM images of thin Gold films with nominal thicknesses of a) 3nm, b) 6 nm, c) 8 nm, d) 10 nm, and e) 12 nm deposited by electron-beam evaporation on glass substrates.
Fig. 2
Fig. 2 a) Reflection and b) transmission spectra obtained for the thin gold films with nominal thicknesses of 3 nm, 6 nm, 8 nm, 10 nm, and 12 nm and normalized as explained in the text.
Fig. 3
Fig. 3 a) Typical TPL image from the thin gold films, obtained here for 6 nm thickness. (Signal levels at bright spots are typically larger by 30-40% than the average TPL signal). b) Dependence of TPL signal on the power for the thicknesses 3, 6, 8, 10, and 12 nm. The log/log curves are shown with a linear curve fit and slope-values in the legend illustrate the super-cubic signal dependence on incident power.
Fig. 4
Fig. 4 a) Typical SERS image obtained for the thin Gold films, obtained here for 6 nm thickness. (Signal levels at bright spots larger by 10-15% than the average SERS signal). b) SERS spectra of CV with concentration 10−6M for all thicknesses (3, 6, 8, 10, and 12 nm). The shaded column indicates the range used for SERS imaging in a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α= S str P ref 2 A ref S ref P str 2 A str
EF= I SERS I ref C ref C SERS ,

Metrics