Abstract

A tunable eye-opening lattice filter for dispersion compensation is demonstrated on an ultra low-loss waveguide platform based on a compact high-aspect ratio Si3N4 core. A programmable 10th order lattice filter is demonstrated by cascading a total of 21 Mach-Zehnder interferometers with programmable delay lines of lengths designed at the baseband data rate. The filter has a footprint of 2.23 cm2 with continuously tunable dispersion from −500 ps/nm to 500 ps/nm. The filter shows a periodic transfer function with a measured FSR of 100 GHz capable of compensating multiple WDM channels with a single device.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits

Kuanping Shang, Shibnath Pathak, Binbin Guan, Guangyao Liu, and S. J. B. Yoo
Opt. Express 23(16) 21334-21342 (2015)

Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Express 21(4) 5041-5052 (2013)

Silicon photonic tunable optical dispersion compensator

Richard Jones, Jonathan Doylend, Paniz Ebrahimi, Simon Ayotte, Omri Raday, and Oded Cohen
Opt. Express 15(24) 15836-15841 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Hsu, C. Wei, H. Chen, and J. Chen, “Cost-effective OFDM transmission technologies for long reach PON,” in The Current Trend of Optics and Photonics, C.-C. Lee (Springer 2015).
  2. K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
    [Crossref]
  3. H. Kawashima, N. Matsubara, and K. Nara, “Polarization Insensitive Wideband Tunable Dispersion Compensator with Integrated PLC Type Polarization Diversity Circuit,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThE6.
    [Crossref]
  4. F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
    [Crossref]
  5. R. Jones, J. Doylend, P. Ebrahimi, S. Ayotte, O. Raday, and O. Cohen, “Silicon photonic tunable optical dispersion compensator,” Opt. Express 15(24), 15836–15841 (2007).
    [Crossref] [PubMed]
  6. S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
    [Crossref]
  7. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011).
    [Crossref] [PubMed]
  8. C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
    [Crossref]
  9. J. Gehler, R. Wessel, F. Buchali, G. Thielecke, A. Heid, and H. Bülow, “Dynamic Adaptation of a PLC Residual Chromatic Dispersion Compensator at 40Gb/s,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FN7.
    [Crossref]
  10. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley 2012).
  11. J. F. Bauters, M. J. R. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19(24), 24090–24101 (2011).
    [Crossref] [PubMed]
  12. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
    [Crossref]

2013 (1)

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

2011 (3)

2007 (1)

2004 (1)

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

2003 (1)

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

1996 (1)

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

Ayotte, S.

Bapst, U.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Barton, J. S.

Bauters, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Bauters, J. F.

Blumenthal, D. J.

Bona, G. L.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Bowers, J. E.

Bruinink, C. M.

Cappuzzo, M.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Chen, E.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Cohen, O.

Dai, D.

Ding, Z.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Djordjevic, S. S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Doerr, C. R.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Doylend, J.

Ebrahimi, P.

Fontaine, N. K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Garcia, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Germann, R.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Gomez, L.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Guan, B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Heck, M. J. R.

Heideman, R. G.

Horst, F.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Ibrahim, S.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Jinguji, K.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

John, D.

John, D. D.

Jones, R.

Laskowski, E.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Leinse, A.

Li, W.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Lipson, M.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Luo, L. W.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Moreira, R. L.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Offrein, B. J.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Ohmori, Y.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

Okamoto, K.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

Poitras, C. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Raday, O.

Takiguchi, K.

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

Tien, M.-C.

Wiesmann, D.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

Wong-Foy, A.

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

Yoo, S. J. B.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

Zhou, L.

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

EEE J. Sel. Top. Quantum Electron. (1)

K. Takiguchi, K. Jinguji, K. Okamoto, and Y. Ohmori, “Variable group-delay dispersion equalizer using lattice-form programmable optical filter on planar lightwave circuit,” EEE J. Sel. Top. Quantum Electron. 2(2), 270–276 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (4)

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. J. Offrein, and G. L. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photonics Technol. Lett. 15(11), 1570–1572 (2003).
[Crossref]

S. S. Djordjevic, L. W. Luo, S. Ibrahim, N. K. Fontaine, C. B. Poitras, B. Guan, L. Zhou, K. Okamoto, Z. Ding, M. Lipson, and S. J. B. Yoo, “Fully Reconfigurable Silicon Photonic Lattice Filters With Four Cascaded Unit Cells,” IEEE Photonics Technol. Lett. 23(1), 42–44 (2011).
[Crossref]

C. R. Doerr, M. Cappuzzo, A. Wong-Foy, L. Gomez, E. Laskowski, and E. Chen, “Potentially inexpensive 10-Gb/s tunable dispersion compensator with low polarization sensitivity,” IEEE Photonics Technol. Lett. 16(5), 1340–1342 (2004).
[Crossref]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated Ultra-Low-Loss 4-Bit Tunable Delay for Broadband Phased Array Antenna Applications,” IEEE Photonics Technol. Lett. 25(12), 1165–1168 (2013).
[Crossref]

Opt. Express (3)

Other (4)

H. Kawashima, N. Matsubara, and K. Nara, “Polarization Insensitive Wideband Tunable Dispersion Compensator with Integrated PLC Type Polarization Diversity Circuit,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThE6.
[Crossref]

J. Gehler, R. Wessel, F. Buchali, G. Thielecke, A. Heid, and H. Bülow, “Dynamic Adaptation of a PLC Residual Chromatic Dispersion Compensator at 40Gb/s,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper FN7.
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley 2012).

D. Hsu, C. Wei, H. Chen, and J. Chen, “Cost-effective OFDM transmission technologies for long reach PON,” in The Current Trend of Optics and Photonics, C.-C. Lee (Springer 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the 10-stage dispersion compensating filter architecture with single knob dispersion control.
Fig. 2
Fig. 2 Schematic of a single stage of the dispersion-compensating filter showing all the building blocks required to describe the filter.
Fig. 3
Fig. 3 Simulated filter dispersion for the generalized lattice filter as a function of the number of stages for 3 different unit delay length. The associated bandwidth (BW) is shown above each curve.
Fig. 4
Fig. 4 (Left) Schematic of the fabricated waveguide cross-section. (Right) Measured propagation loss as a function of wavelength for TE and TM polarization.
Fig. 5
Fig. 5 (Left) Mask layout showing the dimensions for the filter (9.89 mm x 22.5 mm) (Right) Optical microscope picture of the final fabricated device.
Fig. 6
Fig. 6 Measured transmission and group delay for a single bias setting.
Fig. 7
Fig. 7 Filter response for various bias setting on the tunable coupler.
Fig. 8
Fig. 8 Filter transmission with heaters and no heater for the same filter, corresponding to a metal absorption loss of 5.5 dB.
Fig. 9
Fig. 9 Complete filter characterization for a single passband, showing transmission and group delay results for seven different bias settings.
Fig. 10
Fig. 10 (Left) Example of a linear fit through a group delay data showing a measured dispersion of 170 ps/nm and a group delay ripple of +/− 4 ps. (Right) Filter measured dispersion as a function of voltage bias.
Fig. 11
Fig. 11 Dispersion equalizer transmission testbed.
Fig. 12
Fig. 12 Eye diagrams for the uncompensated transmission link (left) and compensated link (right).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ E 1out E 2out ]=[ T 11 T 12 T 21 T 22 ][ E 1in E 2in ]=T[ E 1in E 2in ]
T= T coupler T delay T coupler
T=[ 1κ j κ j κ 1κ ][ e jkn L 1 0 0 e jkn L 2 ][ 1κ j κ j κ 1κ ]
Transmission= T r = | T 11 | 2
Phase=Θ=arg{ T 11 }
τ= dΘ dν
D= dτ dν

Metrics