Abstract

We propose a hole-patterned large aperture (LA) liquid crystal (LC) lens with a diameter of 6 mm. In our design, a floating ring electrode is embedded into the interface between the dielectric layer and the LC layer. This structure increases the electric field strength around the floating ring electrode located near the aperture center and assists in distributing the fringing electric field throughout the LC layer. Therefore, the thick dielectric layer used in the conventional hole-patterned LA LC lens can be effectively decreased. Consequently, the proposed LA LC lens has low operation voltage, large lens power, and introduces a low wavefront error of approximately 0.07 λ.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modification of liquid crystal lens performance by embedded floating ring electrode

Che Ju Hsu, Kaushlendra Agrahari, Pravinraj Selvaraj, Rajiv Manohar, and Chi Yen Huang
Opt. Mater. Express 9(8) 3226-3237 (2019)

Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes

Chi-Wei Chiu, Yu-Cheng Lin, Paul C.-P. Chao, and Andy Y.-G. Fuh
Opt. Express 16(23) 19277-19284 (2008)

An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes

Hung-Chun Lin and Yi-Hsin Lin
Opt. Express 20(3) 2045-2052 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Shibuya, H. Yoshida, and M. Ozaki, “High-speed driving of liquid crystal lens with weakly conductive thin films and voltage booster,” Appl. Opt. 54(27), 8145–8151 (2015).
    [Crossref] [PubMed]
  2. G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27529 (2012).
    [Crossref] [PubMed]
  3. X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
    [Crossref] [PubMed]
  4. R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
    [Crossref] [PubMed]
  5. Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
    [Crossref]
  6. T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
    [Crossref]
  7. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [Crossref]
  8. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  9. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [Crossref] [PubMed]
  10. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref] [PubMed]
  11. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
    [Crossref] [PubMed]
  12. H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
    [Crossref] [PubMed]
  13. H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
    [Crossref]
  14. L. Li, D. Bryant, T. van Heugten, and P. J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52(9), 1978–1986 (2013).
    [Crossref] [PubMed]
  15. L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
    [Crossref] [PubMed]
  16. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [Crossref]
  17. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
    [Crossref] [PubMed]
  18. C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
    [Crossref] [PubMed]
  19. X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
    [Crossref]
  20. M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
    [Crossref]
  21. M. Kawamura and S. Ishikuro, “Feature Extraction from Multiply Focal Images by Using a Liquid Crystal Lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 613(1), 51–58 (2015).
    [Crossref]
  22. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
    [Crossref]
  23. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
    [Crossref]
  24. H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
    [Crossref] [PubMed]
  25. C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).
  26. C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, “Polarization-insensitive liquid crystal microlens array with dual focal modes,” Opt. Express 22(21), 25925–25930 (2014).
    [Crossref] [PubMed]
  27. B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
    [Crossref]
  28. G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
    [Crossref]
  29. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [Crossref] [PubMed]
  30. Y. Y. Kao, P. C. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref] [PubMed]
  31. L. Hui, P. Fan, W. Yuntao, Z. Yanduo, and X. Xiaolin, “Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal,” Appl. Opt. 55(1), 140–147 (2016).
    [Crossref] [PubMed]
  32. Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(5), 5402–5415 (2011).
    [Crossref] [PubMed]
  33. Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
    [Crossref]
  34. Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
    [Crossref]
  35. Y. S. Ha, H. J. Kim, H. G. Park, and D. S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Opt. Express 20(6), 6448–6455 (2012).
    [Crossref] [PubMed]

2016 (2)

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

L. Hui, P. Fan, W. Yuntao, Z. Yanduo, and X. Xiaolin, “Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal,” Appl. Opt. 55(1), 140–147 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (2)

2013 (3)

2012 (6)

2011 (3)

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(5), 5402–5415 (2011).
[Crossref] [PubMed]

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

2010 (4)

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Y. Y. Kao, P. C. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref] [PubMed]

2008 (1)

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

2006 (1)

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

2004 (4)

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

2002 (2)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

1999 (1)

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

1979 (1)

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Asatryan, K.

Bagramyan, A.

Bos, P. J.

Brimicombe, P.

Bryant, D.

Chang, Y. C.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

Chao, P. C.

Chao, P. C. P.

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(5), 5402–5415 (2011).
[Crossref] [PubMed]

Chen, B. L.

Chen, H. S.

Chen, Y.

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Chih, S. Y.

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, “Polarization-insensitive liquid crystal microlens array with dual focal modes,” Opt. Express 22(21), 25925–25930 (2014).
[Crossref] [PubMed]

Clamp, J.

Fan, P.

Fan, Y. H.

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Galstian, T.

Gleeson, H.

Guralnik, I. R.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Ha, Y. S.

Hands, P. J. W.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
[Crossref]

Hayashi, M.

Hong, Q.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Hsu, C. J.

Hsueh, C. W.

Huang, C. Y.

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, “Polarization-insensitive liquid crystal microlens array with dual focal modes,” Opt. Express 22(21), 25925–25930 (2014).
[Crossref] [PubMed]

Huang, Y. P.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

Hui, L.

Ishikuro, S.

M. Kawamura and S. Ishikuro, “Feature Extraction from Multiply Focal Images by Using a Liquid Crystal Lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 613(1), 51–58 (2015).
[Crossref]

Ishinabe, T.

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Javidi, B.

Jen, T. H.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

Jeong, J.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Jhang, J. J.

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

Kao, Y. Y.

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(5), 5402–5415 (2011).
[Crossref] [PubMed]

Y. Y. Kao, P. C. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref] [PubMed]

Kawamura, M.

M. Kawamura and S. Ishikuro, “Feature Extraction from Multiply Focal Images by Using a Liquid Crystal Lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 613(1), 51–58 (2015).
[Crossref]

Kim, H. J.

Kim, J. H.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Kim, Y. W.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Kirby, A. K.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
[Crossref]

Kotova, S. P.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Lee, C.

Lee, S. H.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Li, L.

Liang, X.

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Liao, C. H.

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, “Polarization-insensitive liquid crystal microlens array with dual focal modes,” Opt. Express 22(21), 25925–25930 (2014).
[Crossref] [PubMed]

Lien, A.

Lin, H. C.

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

Lin, Y. H.

X. Shen, Y. J. Wang, H. S. Chen, X. Xiao, Y. H. Lin, and B. Javidi, “Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens,” Opt. Lett. 40(4), 538–541 (2015).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Liu, C. L.

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Liu, Y. F.

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Lo, C. C.

Loktev, M. Y.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Love, G. D.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
[Crossref]

Luo, Y. Q.

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Milton, H.

Morgan, P.

Naumov, A. F.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Okuzawa, N.

Ozaki, M.

Park, H. G.

Presnyakov, V.

Rao, L. H.

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Ren, H.

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Ren, H. W.

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Reshetnyak, V.

Sato, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Seo, D. S.

Shen, X.

Sheu, C. R.

Shibuya, G.

Shieh, H. P. D.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

Sova, O.

Takahashi, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Ting, C. H.

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

Tork, A.

Uchida, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Van Heugten, T.

Vdovin, G. V.

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Wang, B.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Wang, Y. J.

Wu, S. T.

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

Xiao, X.

Xiaolin, X.

Xu, S.

R. Zhu, S. Xu, Q. Hong, S. T. Wu, C. Lee, C. M. Yang, C. C. Lo, and A. Lien, “Polymeric-lens-embedded 2D/3D switchable display with dramatically reduced crosstalk,” Appl. Opt. 53(7), 1388–1395 (2014).
[Crossref] [PubMed]

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

Yamaguchi, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

Yanase, S.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

Yanduo, Z.

Yang, C. M.

Ye, M.

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, and S. Sato, “Focus tuning by liquid crystal lens in imaging system,” Appl. Opt. 51(31), 7630–7635 (2012).
[Crossref] [PubMed]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref] [PubMed]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[Crossref] [PubMed]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Yoshida, H.

Yu, C. J.

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Yuntao, W.

Zhang, D. Y.

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Zhao, X. J.

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Zhu, R.

Zohrabyan, A.

Appl. Opt. (7)

Appl. Phys. Express (1)

Y. W. Kim, J. Jeong, S. H. Lee, J. H. Kim, and C. J. Yu, “Improvement in Switching Speed of Nematic Liquid Crystal Microlens Array with Polarization Independence,” Appl. Phys. Express 3(9), 094102 (2010).
[Crossref]

Appl. Phys. Lett. (2)

Y. H. Fan, H. W. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85(13), 2451–2453 (2004).
[Crossref]

H. C. Lin and Y. H. Lin, “An electrically tunable focusing liquid crystal lens with a built-in planar polymeric lens,” Appl. Phys. Lett. 98(8), 083503 (2011).
[Crossref]

J. Disp. Technol. (2)

Y. F. Liu, H. Ren, S. Xu, Y. Chen, L. H. Rao, T. Ishinabe, and S. T. Wu, “Adaptive Focus Integral Image System Design Based on Fast-Response Liquid Crystal Microlens,” J. Disp. Technol. 7(12), 674–678 (2011).
[Crossref]

T. H. Jen, Y. C. Chang, C. H. Ting, H. P. D. Shieh, and Y. P. Huang, “Locally Controllable Liquid Crystal Lens Array for Partially Switchable 2D/3D Display,” J. Disp. Technol. 11(10), 839–844 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (6)

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

M. Ye, B. Wang, M. Uchida, S. Yanase, S. Takahashi, M. Yamaguchi, and S. Sato, “Low-Voltage-Driving Liquid Crystal Lens,” Jpn. J. Appl. Phys. 49(10), 100204 (2010).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens Using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

Liq. Cryst. (1)

C. J. Hsu, S. Y. Chih, J. J. Jhang, C. H. Liao, and C. Y. Huang, “Coaxially bifocal liquid crystal lens with switchable optical aperture,” Liq. Cryst. 43, 336–342 (2016).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

M. Kawamura and S. Ishikuro, “Feature Extraction from Multiply Focal Images by Using a Liquid Crystal Lens,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 613(1), 51–58 (2015).
[Crossref]

Opt. Express (9)

C. J. Hsu, C. H. Liao, B. L. Chen, S. Y. Chih, and C. Y. Huang, “Polarization-insensitive liquid crystal microlens array with dual focal modes,” Opt. Express 22(21), 25925–25930 (2014).
[Crossref] [PubMed]

Y. S. Ha, H. J. Kim, H. G. Park, and D. S. Seo, “Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping,” Opt. Express 20(6), 6448–6455 (2012).
[Crossref] [PubMed]

H. Milton, P. Brimicombe, P. Morgan, H. Gleeson, and J. Clamp, “Optimization of refractive liquid crystal lenses using an efficient multigrid simulation,” Opt. Express 20(10), 11159–11165 (2012).
[Crossref] [PubMed]

Y. Y. Kao, P. C. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref] [PubMed]

C. J. Hsu and C. R. Sheu, “Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals,” Opt. Express 20(4), 4738–4746 (2012).
[Crossref] [PubMed]

L. Li, D. Bryant, T. Van Heugten, and P. J. Bos, “Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes,” Opt. Express 21(7), 8371–8381 (2013).
[Crossref] [PubMed]

G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27529 (2012).
[Crossref] [PubMed]

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18(13), 13981–13992 (2010).
[Crossref] [PubMed]

H. C. Lin and Y. H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express 20(3), 2045–2052 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (Stuttg.) (1)

X. J. Zhao, C. L. Liu, D. Y. Zhang, and Y. Q. Luo, “Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab,” Optik (Stuttg.) 124(23), 6132–6139 (2013).
[Crossref]

Proc. SPIE (1)

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004).
[Crossref]

Quantum Electron. (1)

G. V. Vdovin, I. R. Guralnik, S. P. Kotova, M. Y. Loktev, and A. F. Naumov, “Liquid-crystal lenses with a controlled focal length. II. Numerical optimisation and experiments,” Quantum Electron. 29(3), 261–264 (1999).
[Crossref]

Sensors (Basel) (1)

Y. Y. Kao and P. C. P. Chao, “A new dual-frequency liquid crystal lens with ring-and-pie electrodes and a driving scheme to prevent disclination lines and improve recovery time,” Sensors (Basel) 11(5), 5402–5415 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of structures of the (a) FREE LALC lens, (b) REF LALC lens, and (c) TDL LALC lens.
Fig. 2
Fig. 2 Interference fringes of the REF LALC lens at voltages of (a) 0, (b) 20, (c) 40, and (d) 80 V; interference fringes of the FREE LALC lens at voltages of (e) 0, (f) 20, (g) 40, and (h) 80 V; interference fringes of the TDL LALC lens at voltages of (i) 0, (j) 20, (k) 75, and (l) 100 V.
Fig. 3
Fig. 3 Phase distributions: (a) FREE and REF LALC lenses with AH diameter of 6 mm at 40 V; (b) FREE LALC lens with AH diameter of 6 mm at 20, 40, and 80 V; (c) voltage-dependent wavefront errors of the FREE LALC lens with AH diameters of 6 and 5.2 mm; (d) FREE and TDL LALC lenses with AH diameter of 6 mm at 40 V and 75 V. The symbols and solid lines indicate the measured data and the fitted curves, respectively. In (c), the red dashed line represents the common standard, and the black dashed line represents upper limit of the acceptable lens quality of the solid glass lens, respectively.
Fig. 4
Fig. 4 Voltage-dependent focal lengths of the FREE and TDL LALC lenses. The solid line indicates the fitted curve with spline interpolation function of MATLAB.
Fig. 5
Fig. 5 Rise times (a) and fall times (b) of the FREE and TDL LALC lenses.
Fig. 6
Fig. 6 Schematic diagrams of the electric field distributions of the REF and FREE LALC lenses with a dielectric layer of the same thickness: (a) REF type and (b) FREE type. The red solid lines represent the electric field lines in the cells.
Fig. 7
Fig. 7 Image performance through the FREE LALC lens with supplied voltages of (a) 0, and (b) 40 V, the distance between the LALC lens and object is 12 cm. Image performance through the FREE LALC lens with supplied voltages of (c) 0, and (d) 10 V, the distance between the LALC lens and object is 21 cm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f= r 2 2Nλ ,
f= r 2 2Δnd .

Metrics