Abstract

Planar multi-annular nanostructured metasurfaces have provided a new way to realize far-field optical super-resolution focusing and nanoscopic imaging, due to the delicate interference of propagating waves diffracted from the metasurface mask. However, so far there are no proper methods that can be used to essentially interpret the super-focusing and nano-imaging mechanisms. This research proposes an electromagnetic methodology for the super-resolution investigation of nanostructured metasurfaces. We have physically modeled the polarization-dependent transmission effect of the subwavelength nanostructure and the vectorial imaging process of a high-numerical-aperture microscopic system. We have found theoretically and experimentally that the current design theories may produce imprecise results; the microscopic imaging experimental method can only detect transversely polarized electric field component and cannot map out three-dimensional total electric energy density distribution behind metasurfaces. This method will potentially be used in far-field nanoscopy, nanolithography, high-density optical storage, etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Visible achromatic super-oscillatory metasurfaces for sub-diffraction focusing

Dongliang Tang, Long Chen, and Jianjun Liu
Opt. Express 27(9) 12308-12316 (2019)

Investigation of axial and transverse focal spot sizes of Fresnel zone plates

Tao Liu, Qiang Liu, Shuming Yang, Zhuangde Jiang, Tong Wang, and Guofeng Zhang
Appl. Opt. 56(13) 3725-3729 (2017)

Focusing dual-wavelength surface plasmons to the same focal plane by a far-field plasmonic lens

Priyamvada Venugopalan, Qiming Zhang, Xiangping Li, L. Kuipers, and Min Gu
Opt. Lett. 39(19) 5744-5747 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  2. E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
    [Crossref] [PubMed]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  4. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
    [Crossref] [PubMed]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [Crossref] [PubMed]
  6. H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [Crossref]
  7. T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
    [Crossref]
  8. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  9. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  10. T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
    [Crossref] [PubMed]
  11. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
    [Crossref] [PubMed]
  12. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
    [Crossref]
  13. T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
    [Crossref]
  14. T. Liu, J. Tan, J. Liu, and H. Wang, “Modulation of a super-Gaussian optical needle with high-NA Fresnel zone plate,” Opt. Lett. 38(15), 2742–2745 (2013).
    [Crossref] [PubMed]
  15. T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
    [Crossref]
  16. T. Liu, T. Wang, S. Yang, L. Sun, and Z. Jiang, “Rigorous electromagnetic test of super-oscillatory lens,” Opt. Express 23(25), 32139–32148 (2015).
    [Crossref] [PubMed]
  17. H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
    [Crossref]
  18. G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
    [Crossref] [PubMed]
  19. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  20. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  21. F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
    [Crossref]
  22. A. Talflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Third edition, Artech House, 2005).
  23. E. D. Palik, Handbook of optical constants of solids II (Academic, 1991).
  24. M. R. Foreman and P. Török, “Tutorial review computational methods in vectorial imaging,” J. Mod. Opt. 58(5-6), 339–364 (2011).
    [Crossref]
  25. P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15(15), 9293–9307 (2007).
    [Crossref] [PubMed]
  26. A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
    [Crossref] [PubMed]
  27. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  28. R. A. Serway, Principles of Physics, 2nd ed. (Saunders College Publishing, 1998).

2016 (1)

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

2015 (3)

2014 (1)

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

2013 (5)

T. Liu, J. Tan, J. Liu, and H. Wang, “Modulation of a super-Gaussian optical needle with high-NA Fresnel zone plate,” Opt. Lett. 38(15), 2742–2745 (2013).
[Crossref] [PubMed]

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

2012 (1)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

2011 (1)

M. R. Foreman and P. Török, “Tutorial review computational methods in vectorial imaging,” J. Mod. Opt. 58(5-6), 339–364 (2011).
[Crossref]

2010 (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (2)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

2008 (2)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

2007 (4)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15(15), 9293–9307 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

2004 (1)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

1994 (1)

1972 (1)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Adamo, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Ash, E. A.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Berini, P.

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Chen, Y.

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

Chong, C. T.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Dennis, M. R.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Foreman, M. R.

M. R. Foreman and P. Török, “Tutorial review computational methods in vectorial imaging,” J. Mod. Opt. 58(5-6), 339–364 (2011).
[Crossref]

Garcia de Abajo, F.

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Hell, S. W.

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

Huang, K.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Jiang, Z.

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
[Crossref]

T. Liu, T. Wang, S. Yang, L. Sun, and Z. Jiang, “Rigorous electromagnetic test of super-oscillatory lens,” Opt. Express 23(25), 32139–32148 (2015).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lesina, A. C.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Lindberg, J.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Liu, J.

Liu, T.

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
[Crossref]

T. Liu, T. Wang, S. Yang, L. Sun, and Z. Jiang, “Rigorous electromagnetic test of super-oscillatory lens,” Opt. Express 23(25), 32139–32148 (2015).
[Crossref] [PubMed]

T. Liu, J. Tan, J. Liu, and H. Wang, “Modulation of a super-Gaussian optical needle with high-NA Fresnel zone plate,” Opt. Lett. 38(15), 2742–2745 (2013).
[Crossref] [PubMed]

T. Liu, J. Tan, J. Liu, and H. Wang, “Vectorial design of super-oscillatory lens,” Opt. Express 21(13), 15090–15101 (2013).
[Crossref] [PubMed]

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Luk’yanchuk, B.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Munro, P. R. T.

Nicholls, G.

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

Qiu, C.-W.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Ramunno, L.

Rogers, E. T. F.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Roy, T.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Savo, S.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

Shen, T.

T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
[Crossref]

Shen, Z.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Sheppard, C.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Sun, L.

Tan, J.

Teng, J.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Török, P.

M. R. Foreman and P. Török, “Tutorial review computational methods in vectorial imaging,” J. Mod. Opt. 58(5-6), 339–364 (2011).
[Crossref]

P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15(15), 9293–9307 (2007).
[Crossref] [PubMed]

Vaccari, A.

Wang, H.

Wang, T.

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

T. Liu, T. Wang, S. Yang, L. Sun, and Z. Jiang, “Rigorous electromagnetic test of super-oscillatory lens,” Opt. Express 23(25), 32139–32148 (2015).
[Crossref] [PubMed]

Wichmann, J.

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Yang, S.

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
[Crossref]

T. Liu, T. Wang, S. Yang, L. Sun, and Z. Jiang, “Rigorous electromagnetic test of super-oscillatory lens,” Opt. Express 23(25), 32139–32148 (2015).
[Crossref] [PubMed]

Ye, H.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Yeo, S. P.

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Yuan, G.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Zhang, X.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

Appl. Phys. Lett. (2)

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102(3), 031108 (2013).
[Crossref]

F. M. Huang, N. I. Zheludev, Y. Chen, and F. Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[Crossref]

J. Mod. Opt. (1)

M. R. Foreman and P. Török, “Tutorial review computational methods in vectorial imaging,” J. Mod. Opt. 58(5-6), 339–364 (2011).
[Crossref]

J. Opt. (1)

T. Liu, T. Shen, S. Yang, and Z. Jiang, “Subwavelength focusing by binary multi-annular plates: design theory and experiment,” J. Opt. 17(3), 035610 (2015).
[Crossref]

Laser Phys. Lett. (1)

H. Ye, C.-W. Qiu, K. Huang, J. Teng, B. Luk’yanchuk, and S. P. Yeo, “Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method,” Laser Phys. Lett. 10(6), 065004 (2013).
[Crossref]

Nano Lett. (2)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9(3), 1249–1254 (2009).
[Crossref] [PubMed]

Nat. Mater. (2)

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11(5), 432–435 (2012).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Wang, L. Shi, B. Luk’yanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[Crossref]

Nature (2)

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237(5357), 510–512 (1972).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Commun. (2)

T. Liu, J. Tan, and J. Liu, “Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical aperture lens systems,” Opt. Commun. 294, 21–23 (2013).
[Crossref]

T. Liu, T. Wang, S. Yang, and Z. Jiang, “Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces,” Opt. Commun. 372, 118–122 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci. Rep. (1)

G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, “Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths,” Sci. Rep. 4, 6333 (2014).
[Crossref] [PubMed]

Science (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Other (3)

A. Talflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Third edition, Artech House, 2005).

E. D. Palik, Handbook of optical constants of solids II (Academic, 1991).

R. A. Serway, Principles of Physics, 2nd ed. (Saunders College Publishing, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of an EM focusing and imaging model for metasurfaces. BS and FS are the back surface and front surface of the metal film, respectively. The vector field of light behind the nanostructured metasurface was determined by 3D FDTD simulation and observed by a high-NA coherent optical microscope (infinity correction).
Fig. 2
Fig. 2 Top view of the metasurface structure. (a) M1; (b) M3.
Fig. 3
Fig. 3 Influence of the film material and thickness on the main focus of M1. (a), (b) Axial peak positions before and after correction, respectively. (c) peak intensity. (d) spot sizes evaluated by the FWHM along the x, y, and z directions.
Fig. 4
Fig. 4 Light amplitude decays exponentially with respect to the penetration depth in the metal of Au, Al, Ag, respectively (the value 1/e corresponding to the skin-depth).
Fig. 5
Fig. 5 Electric field structures in the transverse plane for M1 illuminated with an x-polarized LPB. Top row: z = 5 nm; middle row: z = 20 nm; bottom row: z = 100 nm (front surface of the film).
Fig. 6
Fig. 6 Comparison of the intensity distributions of M2. (a), (b), (c) VAS theory calculations in the x-z plane. (d), (e), (f) electric energy densities in the x-y plane for z = 33.32 μm. (g), (h) EM imaging result and experimental result, respectively, in the x-y observation plane. (i) on-axis intensity distributions. (j) intensity distributions along the x direction when z = 33.32 μm.
Fig. 7
Fig. 7 Comparison of the intensity distributions of M3. (a), (b), (c) VAS theory calculations in the x-z plane. (d), (e), (f) 3D FDTD simulation results in the x-z plane. (g) on-axis intensity distributions. (h), (i), (j) transverse intensity distributions obtained by FDTD simulations when z = 10.40 μm. (k), (l), (m) transverse intensity distributions calculated by the VAS theory when z = 10.47 μm. (n) EM imaging result calculated by the vectorial imaging theory for the observation electric field shown in (j). (p), (q) intensity distributions along the x and y directions, respectively.

Tables (1)

Tables Icon

Table 1 Optimized metasurface samples

Metrics