Abstract

We propose a novel multiplexed ultra-compact high-sensitivity one-dimensional (1D) photonic crystal (PC) nanobeam cavity sensor array on a monolithic silicon chip, referred to as Parallel Integrated 1D PC Nanobeam Cavity Sensor Array (PI-1DPC-NCSA). The performance of the device is investigated numerically with three-dimensional finite-difference time-domain (3D-FDTD) technique. The PI-1DPC-NCSA consists of multiple parallel-connected channels of integrated 1D PC nanobeam cavities/waveguides with gap separations. On each channel, by connecting two additional 1D PC nanobeam bandstop filters (1DPC-NBFs) to a 1D PC nanobeam cavity sensor (1DPC-NCS) in series, a transmission spectrum with a single targeted resonance is achieved for the purpose of multiplexed sensing applications. While the other spurious resonances are filtered out by the stop-band of 1DPC-NBF, multiple 1DPC-NCSs at different resonances can be connected in parallel without spectrum overlap. Furthermore, in order for all 1DPC-NCSs to be integrated into microarrays and to be interrogated simultaneously with a single input/output port, all channels are then connected in parallel by using a 1 × n taper-type equal power splitter and a n × 1 S-type power combiner in the input port and output port, respectively (n is the channel number). The concept model of PI-1DPC-NCSA is displayed with a 3-parallel-channel 1DPC-NCSs array containing series-connected 1DPC-NBFs. The bulk refractive index sensitivities as high as 112.6nm/RIU, 121.7nm/RIU, and 148.5nm/RIU are obtained (RIU = Refractive Index Unit). In particular, the footprint of the 3-parallel-channel PI-1DPC-NCSA is 4.5μm × 50μm (width × length), decreased by more than three orders of magnitude compared to 2D PC integrated sensor arrays. Thus, this is a promising platform for realizing ultra-compact lab-on-a-chip applications with high integration density and high parallel-multiplexing capabilities.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing

Fujun Sun, Zhongyuan Fu, Chunhong Wang, Zhaoxiang Ding, Chao Wang, and Huiping Tian
Appl. Opt. 56(15) 4363-4368 (2017)

High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter

Zhongyuan Fu, Fujun Sun, Chao Wang, Jiawen Wang, and Huiping Tian
Appl. Opt. 58(22) 5997-6002 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367–418 (2006).
    [Crossref]
  2. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [Crossref] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  4. Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
    [Crossref] [PubMed]
  5. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  7. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
    [Crossref] [PubMed]
  8. B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
    [Crossref] [PubMed]
  9. R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
    [Crossref]
  10. Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
    [Crossref] [PubMed]
  11. J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  12. L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  13. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
    [Crossref] [PubMed]
  14. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
    [Crossref] [PubMed]
  15. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [Crossref] [PubMed]
  16. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [Crossref]
  17. C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23(5), 5491–5499 (2015).
    [Crossref] [PubMed]
  18. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  19. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
    [Crossref]
  20. M. S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
    [Crossref] [PubMed]
  21. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
    [Crossref] [PubMed]
  22. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
    [Crossref] [PubMed]
  23. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [Crossref]
  24. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
    [Crossref]
  25. J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
    [Crossref]
  26. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [Crossref] [PubMed]
  27. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [Crossref] [PubMed]
  28. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
    [Crossref] [PubMed]
  29. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008).
    [Crossref] [PubMed]
  30. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
    [Crossref] [PubMed]
  31. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [Crossref]
  32. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
    [Crossref] [PubMed]
  33. T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010).
    [Crossref] [PubMed]
  34. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “High-index sensitivity of surface mode in photonic crystal hetero-slab-edge microcavity,” Opt. Lett. 35(9), 1452–1454 (2010).
    [Crossref] [PubMed]
  35. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
    [Crossref] [PubMed]
  36. Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20(18), 19912–19920 (2012).
    [Crossref] [PubMed]
  37. S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
    [Crossref] [PubMed]
  38. A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
    [Crossref]
  39. H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M. P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
    [Crossref] [PubMed]
  40. M. N. Hossain, J. Justice, P. Lovera, A. O’Riordan, and B. Corbett, “Dual resonance approach to decoupling surface and bulk attributes in photonic crystal biosensor,” Opt. Lett. 39(21), 6213–6216 (2014).
    [Crossref] [PubMed]
  41. C. Caër, S. F. Serna-Otálvaro, W. Zhang, X. Le Roux, and E. Cassan, “Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration,” Opt. Lett. 39(20), 5792–5794 (2014).
    [Crossref] [PubMed]
  42. P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M. M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23(13), 16529–16539 (2015).
    [Crossref] [PubMed]
  43. A. A. Siraji and Y. Zhao, “High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors,” Opt. Lett. 40(7), 1508–1511 (2015).
    [Crossref] [PubMed]
  44. V. M. Lavchiev, B. Jakoby, U. Hedenig, T. Grille, J. M. R. Kirkbride, and G. A. D. Ritchie, “M-line spectroscopy on mid-infrared Si photonic crystals for fluid sensing and chemical imaging,” Opt. Express 24(1), 262–271 (2016).
    [Crossref] [PubMed]
  45. M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
    [Crossref]
  46. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  47. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated opto-fluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [Crossref]
  48. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [Crossref] [PubMed]
  49. S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
    [Crossref] [PubMed]
  50. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
    [Crossref] [PubMed]
  51. D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).
  52. Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
    [Crossref] [PubMed]
  53. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
    [Crossref] [PubMed]
  54. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V fabry-perot microcavity on soi substrate,” Opt. Express 15(24), 16090–16096 (2007).
    [Crossref] [PubMed]
  55. J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
    [Crossref]
  56. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [Crossref] [PubMed]
  57. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
    [Crossref]
  58. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [Crossref]
  59. Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
    [Crossref] [PubMed]
  60. A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-Q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
    [Crossref]
  61. S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
    [Crossref] [PubMed]
  62. T. Lin, X. Zhang, G. Zhou, C. Siong, and J. Deng, “Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing,” J. Opt. Soc. Am. B 32(9), 1788–1791 (2015).
    [Crossref]
  63. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [Crossref] [PubMed]
  64. C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
    [Crossref]
  65. D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
    [Crossref]
  66. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
    [Crossref]
  67. D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
    [Crossref]
  68. Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21(26), 32225–32233 (2013).
    [Crossref] [PubMed]
  69. F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
    [Crossref] [PubMed]
  70. H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
    [Crossref] [PubMed]
  71. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  72. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref] [PubMed]
  73. D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

2016 (3)

V. M. Lavchiev, B. Jakoby, U. Hedenig, T. Grille, J. M. R. Kirkbride, and G. A. D. Ritchie, “M-line spectroscopy on mid-infrared Si photonic crystals for fluid sensing and chemical imaging,” Opt. Express 24(1), 262–271 (2016).
[Crossref] [PubMed]

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

2015 (12)

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M. M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23(13), 16529–16539 (2015).
[Crossref] [PubMed]

A. A. Siraji and Y. Zhao, “High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors,” Opt. Lett. 40(7), 1508–1511 (2015).
[Crossref] [PubMed]

S. Kim, H. M. Kim, and Y. H. Lee, “Single nanobeam optical sensor with a high Q-factor and high sensitivity,” Opt. Lett. 40(22), 5351–5354 (2015).
[Crossref] [PubMed]

T. Lin, X. Zhang, G. Zhou, C. Siong, and J. Deng, “Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing,” J. Opt. Soc. Am. B 32(9), 1788–1791 (2015).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref] [PubMed]

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
[Crossref] [PubMed]

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[Crossref] [PubMed]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23(5), 5491–5499 (2015).
[Crossref] [PubMed]

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

2014 (10)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[Crossref] [PubMed]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

A. Bazin, R. Raj, and F. Raineri, “Design of silica encapsulated high-Q photonic crystal nanobeam cavity,” J. Lightwave Technol. 32(5), 952–958 (2014).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

M. N. Hossain, J. Justice, P. Lovera, A. O’Riordan, and B. Corbett, “Dual resonance approach to decoupling surface and bulk attributes in photonic crystal biosensor,” Opt. Lett. 39(21), 6213–6216 (2014).
[Crossref] [PubMed]

C. Caër, S. F. Serna-Otálvaro, W. Zhang, X. Le Roux, and E. Cassan, “Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration,” Opt. Lett. 39(20), 5792–5794 (2014).
[Crossref] [PubMed]

D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (2)

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20(18), 19912–19920 (2012).
[Crossref] [PubMed]

2011 (6)

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

2010 (7)

2009 (4)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[Crossref] [PubMed]

2008 (8)

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008).
[Crossref] [PubMed]

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
[Crossref] [PubMed]

M. S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[Crossref] [PubMed]

2007 (5)

2006 (3)

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367–418 (2006).
[Crossref]

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

2005 (1)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (2)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
[Crossref]

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

1998 (1)

Aitchison, J. S.

Aldridge, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Allen, M. G.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Anthes-Washburn, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Arnold, S.

Azab, M.

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Baba, T.

Baets, R.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Baida, F. I.

Bazin, A.

Bernal, M. P.

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Bhattacharya, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Bienstman, P.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Borel, P. I.

Botsialas, A.

Burgess, I. B.

Caër, C.

Casas-Bedoya, A.

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

Cassan, E.

Chakravarty, S.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Charvolin, T.

Chbouki, N.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Chen, D.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Chen, L.

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Chen, R. T.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Chen, S.

Chen, W.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Chow, E.

Chu, S. T.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Claes, T.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Clarke, J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Clarke, N.

Clements, W. R.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Collet, M.

Corbett, B.

Courjal, N.

Daw, R.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367–418 (2006).
[Crossref]

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

de Sterke, C. M.

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Deng, J.

Deotare, P. B.

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21(26), 32225–32233 (2013).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Desai, T.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Di Battista, D.

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated opto-fluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Eggleton, B. J.

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated opto-fluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

El-Hefnawy, S.

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

Erickson, D.

Fabricius, N.

Fan, D.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Fan, X.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Fauchet, P. M.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

Finkelstein, J.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367–418 (2006).
[Crossref]

Flood, E. M.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Floyd, D. L.

Forchel, A.

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Frandsen, L. H.

Frank, I. W.

Frish, M. B.

Gill, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Girolami, G.

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Goad, D.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Goldberg, B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Gong, Q.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Goshima, Y.

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Grille, T.

Grot, A.

Grützner, G.

Guillermain, E.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Guyot, C.

Hachuda, S.

Hadji, E.

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hameed, M.

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

He, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Hedenig, U.

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Heikal, A.

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

Hermannsson, P. G.

Ho, W. D.

Hoekman, M.

Hollenbach, U.

Holler, S.

Hossain, M. N.

Hryniewicz, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Hryniewicz, J. V.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Hsiao, Y. H.

Huang, S. H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Ilic, R.

Ingenhoff, J.

Isono, T.

Ja, S. J.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Jakoby, B.

Ji, Y.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref] [PubMed]

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[Crossref] [PubMed]

Jin, W.

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

Jobst, G.

Justice, J.

Kamp, M.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Karlsson, R.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[Crossref] [PubMed]

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Kim, H. M.

Kim, S.

Kim, W.

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

King, O.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Kirkbride, J. M. R.

Kita, S.

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
[Crossref] [PubMed]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008).
[Crossref] [PubMed]

Kjems, J.

Klein, J. J.

Knobbe, E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

Kristensen, A.

Kristensen, M.

Kuramochi, E.

Kwon, M. S.

Kwon, S. H.

Laderer, M.

Lalanne, P.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Lavchiev, V. M.

Le Roux, X.

Lee, M. R.

Lee, P. T.

Lee, Y. H.

Li, B. B.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Li, L.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Li, Y.

Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
[Crossref] [PubMed]

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Liang, F.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

Lin, T.

Lipson, M.

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Little, B. E.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Liu, Q.

Liu, R.

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

Liu, Y.

Loncar, M.

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23(5), 5491–5499 (2015).
[Crossref] [PubMed]

Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
[Crossref] [PubMed]

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21(26), 32225–32233 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
[Crossref]

Long, G. L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Lovera, P.

Lu, H.

Lu, T. W.

Luff, B. J.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mägi, E.

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

Makarona, E.

Mandal, S.

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Masson, J. F.

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

Miller, B. L.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Mirkarimi, L. W.

Misiakos, K.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated opto-fluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

Monifi, F.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Narimatsu, M.

Notomi, M.

Nozaki, K.

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

O’Riordan, A.

Obayya, S.

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

Otsuka, S.

Ozdemir, S.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Özdemir, S. K.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Pal, S.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Patel, P.

Peng, B.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Peng, W.

Peyrade, D.

Picard, E.

Piehler, J.

Popat, K.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Quan, Q.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21(26), 32225–32233 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

Rahmani, A.

Raineri, F.

Raj, R.

Ramachandran, A.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Raptis, I.

Ritchie, G. A. D.

Robinson, J. T.

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Rodier, J. C.

Roh, Y. G.

Ruda, H. E.

Russew, M. M.

Ryckman, J. D.

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

Sabarinathan, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Sadani, B.

Salapatas, A.

Salemink, H. W. M.

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
[Crossref]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Serna-Otálvaro, S. F.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shahnia, S.

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

Shankar, R.

Shi, K.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Shopova, S. I.

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sigalas, M.

Siong, C.

Siraji, A. A.

Skivesen, N.

Smith, C. J.

Smith, C. L.

Sørensen, K. T.

Sriram, R.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

Steel, M. J.

Steier, W. H.

Stoffer, R.

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sünner, T.

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tanabe, T.

Tang, N.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Tang, S. K. Y.

Taniyama, H.

Têtu, A.

Tian, H.

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref] [PubMed]

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[Crossref] [PubMed]

Tomljenovic-Hanic, S.

Topolancik, J.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Ulliac, G.

Unlu, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Van, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

van Hövell, S. W.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Vannahme, C.

Velha, P.

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

Wald, L.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, C.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

Y. Li, C. Wang, and M. Loncar, “Design of nano-groove photonic crystal cavities in lithium niobate,” Opt. Lett. 40(12), 2902–2905 (2015).
[Crossref] [PubMed]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

Wang, S.

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

Wang, Z.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Watanabe, K.

Weiss, S. M.

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Wilkinson, J. S.

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Wosinski, L.

Xiao, Y.

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xiao, Y. F.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Xu, M. Y.

Xu, T.

Yalcin, A.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

Yan, H.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, C. J.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Yang, D.

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[Crossref] [PubMed]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B 30(8), 2027–2031 (2013).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[Crossref] [PubMed]

Yang, L.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yang, X.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Yilmaz, H.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Yu, P.

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Yu, X.

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

Yu, X. C.

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Zhang, P.

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

Zhang, W.

Zhang, X.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

Zhou, G.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Zhu, J.

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zhu, L.

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Zhu, N.

Zou, Y.

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

C. Wang, Q. Quan, S. Kita, Y. Li, and M. Lončar, “Single-nanoparticle detection with slot-mode photonic crystal cavities,” Appl. Phys. Lett. 106(26), 261105 (2015).
[Crossref]

H. Yan, Y. Zou, S. Chakravarty, C. J. Yang, Z. Wang, N. Tang, D. Fan, and R. T. Chen, “Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors,” Appl. Phys. Lett. 106(12), 121103 (2015).
[Crossref] [PubMed]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
[Crossref]

J. D. Ryckman and S. M. Weiss, “Low mode volume slotted photonic crystal single nanobeam cavity,” Appl. Phys. Lett. 101(7), 071104 (2012).
[Crossref]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010).
[Crossref]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[Crossref]

A. Casas-Bedoya, S. Shahnia, D. Di Battista, E. Mägi, and B. J. Eggleton, “Chip scale humidity sensing based on a microfluidic infiltrated photonic crystal,” Appl. Phys. Lett. 103(18), 181109 (2013).
[Crossref]

Y. Zou, S. Chakravarty, L. Zhu, and R. T. Chen, “The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays,” Appl. Phys. Lett. 104(14), 141103 (2014).
[Crossref] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[Crossref]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal cavity laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4651 (2003).
[Crossref]

J. Topolancik, P. Bhattacharya, J. Sabarinathan, and P. Yu, “Fluid detection with photonic crystal-based multichannel waveguides,” Appl. Phys. Lett. 82(8), 1143–1145 (2003).
[Crossref]

Biosens. Bioelectron. (3)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008).
[Crossref] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron. 26(10), 4024–4031 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Van, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonator,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[Crossref]

IEEE Photonics J. (4)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[Crossref]

D. Yang, H. Tian, and Y. Ji, “Nanoscale low crosstalk photonic crystal integrated sensor array,” IEEE Photonics J. 6, 1–7 (2014).

D. Yang, P. Zhang, H. Tian, Y. Ji, and Q. Quan, “Ultrahigh-Q and low mode volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitive refractive index sensing,” IEEE Photonics J. 7, 4501408 (2015).
[Crossref]

D. Yang, C. Wang, and Y. Ji, “Silicon on-chip one-dimensional photonic crystal nanobeam bandgap filter integrated with nanobeam cavity for accurate refractive index sensing,” IEEE Photonics J. 8(2), 4500608 (2016).

IEEE Photonics Technol. Lett. (1)

M. Hameed, M. Azab, A. Heikal, S. El-Hefnawy, and S. Obayya, “Highly sensitive plasmonic photonic crystal temperature sensor filled with liquid crystal,” IEEE Photonics Technol. Lett. 28(1), 59–62 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Mol. Recognit. (1)

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[Crossref] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref] [PubMed]

L. He, S. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated opto-fluidics: a new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367–418 (2006).
[Crossref]

Opt. Express (24)

Y. Liu, S. Chen, Q. Liu, J. F. Masson, and W. Peng, “Compact multi-channel surface plasmon resonance sensor for real-time multi-analyte biosensing,” Opt. Express 23(16), 20540–20548 (2015).
[Crossref] [PubMed]

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23(5), 5491–5499 (2015).
[Crossref] [PubMed]

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[Crossref] [PubMed]

K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, and G. Jobst, “Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation,” Opt. Express 22(8), 8856–8870 (2014).
[Crossref] [PubMed]

M. S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008).
[Crossref] [PubMed]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008).
[Crossref] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[Crossref] [PubMed]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008).
[Crossref] [PubMed]

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16(16), 11709–11717 (2008).
[Crossref] [PubMed]

Y. Liu and H. W. M. Salemink, “Photonic crystal-based all-optical on-chip sensor,” Opt. Express 20(18), 19912–19920 (2012).
[Crossref] [PubMed]

S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express 21(10), 12815–12821 (2013).
[Crossref] [PubMed]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[Crossref] [PubMed]

T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010).
[Crossref] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[Crossref] [PubMed]

D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19(21), 20023–20034 (2011).
[Crossref] [PubMed]

V. M. Lavchiev, B. Jakoby, U. Hedenig, T. Grille, J. M. R. Kirkbride, and G. A. D. Ritchie, “M-line spectroscopy on mid-infrared Si photonic crystals for fluid sensing and chemical imaging,” Opt. Express 24(1), 262–271 (2016).
[Crossref] [PubMed]

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M. M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23(13), 16529–16539 (2015).
[Crossref] [PubMed]

H. Lu, B. Sadani, G. Ulliac, C. Guyot, N. Courjal, M. Collet, F. I. Baida, and M. P. Bernal, “Integrated temperature sensor based on an enhanced pyroelectric photonic crystal,” Opt. Express 21(14), 16311–16318 (2013).
[Crossref] [PubMed]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Loncar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21(26), 32225–32233 (2013).
[Crossref] [PubMed]

F. Liang, N. Clarke, P. Patel, M. Loncar, and Q. Quan, “Scalable photonic crystal chips for high sensitivity protein detection,” Opt. Express 21(26), 32306–32312 (2013).
[Crossref] [PubMed]

P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, “Ultra-high Q/V fabry-perot microcavity on soi substrate,” Opt. Express 15(24), 16090–16096 (2007).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. A (1)

R. Liu, W. Jin, X. Yu, Y. Liu, and Y. Xiao, “Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator,” Phys. Rev. A 91(4), 043836 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, and L. Yang, “Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser,” Proc. Natl. Acad. Sci. U.S.A. 111(37), E3836–E3844 (2014).
[Crossref] [PubMed]

B. B. Li, W. R. Clements, X. C. Yu, K. Shi, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014).
[Crossref] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of integrated silicon 1D PC nanobeam waveguide/cavity device, which consists of one 1DPC-NCS and two additional serially-connected 1DPC-NBFs. (b) 3D-FDTD simulation of the major field distribution profile (|Ey|) of the specific targeted resonant mode (~1520nm) for sensing purpose in the integrated 1D PC nanobeam device formed by two additional series-connected 1DPC-NBFs and a 1DPC-NCS. The unit of the x/y axis is micrometers. Here, for both 1DPC-NBF1 and 1DPC-NBF2, the periodicity a1 = 392nm and a2 = 304nm, the radius of air-hole gratings are kept the same as r1 = 90nm and r2 = 90nm, respectively. For 1DPC-NCS, the periodicity a = 330nm. To create a Gaussian mirror, the air-hole gratings radius are parabolically tapered from rcenter = 121nm in the center to rend = 85nm on both sides, which is symmetric with respect to its center. The thickness and width of the silicon nanobeam waveguide is h = 220nm and wnb = 700nm. nsi = 3.46, nair = 1.0.
Fig. 2
Fig. 2 (a) 3D-FDTD calculated TE band diagram for the 1DPC-NBF1 of Fig. 1(a), a three dimensional dielectric strip, suspended in air, with a period-a1 sequence of cylindrical air-holes. Only the irreducible Brillouin-zone is shown. The discrete guided modes are labeled by orange solid line with triangle marks. The light-cone is shaded blue, bounded by the light line in black dashed line. The inset is the unit cell of 1D PC nanobeam waveguide used in the band structure calculation, in which a1 = 392nm, r1 = 90nm, wnb = 700nm, and h = 220nm. (b) 3D-FDTD calculated transmission spectrum of the displayed 1DPC-NBF device, in which a wide stop-band ranging from 1533.56nm to 1786.26nm is observed.
Fig. 3
Fig. 3 3D-FDTD composed transmission spectra and major field distribution profiles (|Ey|) in x-y plane of the device formed by (a) and (d) 1DPC-NCS without filter, (b) and (e) series-connected 1DPC-NCS and one 1DPC-NBF1, and (c) and (f) series-connected 1DPC-NCS and two 1DPC-NBFs, respectively. As seen, the additional series-connected 1DPC-NBFs have no effect on the resonant wavelength position of the targeted mode for sensing purpose.
Fig. 4
Fig. 4 Schematic of the proposed 3-channel parallel integrated 1D PC nanobeam cavity sensor array (PI-1DPC-NCSA) with single input port and output port. For each channel, three 1D PC nanobeam sections are set in cascade, including one 1DPC-NCS functioned as sensing site and two 1DPC-NBFs functioned as bandstop filters. 1 × 3 taper-type equal power splitter and 3 × 1 S-type power combiner are used to split and combine the waveguides in the input port and output port, respectively. The inset on the right side is the cross-section of electric field profile for the fundamental TE-like mode propagating through the splitter in y-z plane (transversal surface at the green dashed line).
Fig. 5
Fig. 5 (a)-(c) 3D-FDTD calculated transmission spectra obtained from each channel containing the specific resonance wavelength at λ1~1490nm, λ2~1520nm and λ3~1550nm, respectively. (d) Output transmission spectrum of the proposed 3-channel PI-1DPC-NCSA. (e)-(g) The major field distribution profile (|Ey|) in x-y plane of the observed targeted mode with the resonance wavelength at λ1, λ2 and λ3, respectively.
Fig. 6
Fig. 6 3D-FDTD composed transmission spectra observed when three sensing channels are set in parallel and one of them (a) the first top-channel of sensor-1 (S1), and (b) the second middle-channel of sensor-2 (S2) is subjected to changes of refractive index (RI) and the others are not.
Fig. 7
Fig. 7 3D-FDTD composed transmission spectra observed when three sensing channels are set in parallel and two of them the first top-channel of sensor-1 (S1), and the second middle-channel of sensor-2 (S2) are independently subjected to refractive index (RI) changes and the sensor-3 (S3) is not.
Fig. 8
Fig. 8 (a) 3D-FDTD composed transmission spectra monitored from the output port of the proposed 3-channel PI-1DPC-NCSA when all the three parallel sensing channels are interrogated simultaneously between a single input and output. The RI changes from RI = 1.00 to RI = 1.03. (b) Resonant wavelength shifts (red-shifts) of each sensor as a function of RI changes. S1, S2, and S3 refer to sensors 1, 2, and 3, respectively, being 1 the resonant wavelength at shorter wavelength and 3 the resonant wavelength at longer wavelength.

Metrics