Abstract

This paper presents an investigation of the geometric effects within a cylindrical array luminescent solar concentrator (LSC). Photon concentration of a cylindrical LSC increases linearly with cylinder length up to 2 metres. Raytrace modelling on the shading effects of circles on their neighbours demonstrates effective incident light trapping in a cylindrical LSC array at angles of incidence between 60–70 degrees. Raytrace modelling with real-world lighting conditions shows optical efficiency boosts when the suns angle of incidence is within this angle range. On certain days, 2 separate times of peak optical efficiency can be attained over the course of sunrise-solar noon.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment

E. P. J. Merkx, O. M. ten Kate, and E. van der Kolk
Opt. Express 25(12) A547-A563 (2017)

Luminescent Solar Concentrators - A review of recent results

Wilfried G.J.H.M. van Sark, Keith W.J. Barnham, Lenneke H. Slooff, Amanda J. Chatten, Andreas Büchtemann, Andreas Meyer, Sarah J. McCormack, Rolf Koole, Daniel J. Farrell, Rahul Bose, Evert E. Bende, Antonius R. Burgers, Tristram Budel, Jana Quilitz, Manus Kennedy, Toby Meyer, C. De Mello Donegá, Andries Meijerink, and Daniel Vanmaekelbergh
Opt. Express 16(26) 21773-21792 (2008)

Luminescent solar concentrators with fiber geometry

Oreane Y Edelenbosch, Martyn Fisher, Luca Patrignani, Wilfried G J H M van Sark, and Amanda J Chatten
Opt. Express 21(S3) A503-A514 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15(10), 2299–2300 (1976).
    [Crossref] [PubMed]
  2. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
    [Crossref]
  3. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collector,” Appl. Opt. 16(10), 2684–2689 (1977).
    [Crossref] [PubMed]
  4. M.G. Debije and P.P.C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar Energy for the Built Environment,” Adv. Ener. Mat 2(1), 12–35 (2012).
    [Crossref]
  5. N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
    [Crossref]
  6. N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
    [Crossref]
  7. F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
    [Crossref]
  8. A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
    [Crossref]
  9. B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
    [Crossref]
  10. C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
    [Crossref]
  11. C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
    [Crossref]
  12. J.S. Batchelder, A.H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18(18), 3090–3110 (1979).
    [Crossref] [PubMed]
  13. J.S. Batchelder, A.H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20(21), 3733–3754 (1981).
    [Crossref] [PubMed]
  14. K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
    [Crossref]
  15. G. Colantuono, A. Buckley, and R. Erdlyi, “Ray-optics modelling of rectangular and cylindrical 2-layer solar concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
    [Crossref]
  16. O.Y. Edelenbosch, M. Fisher, L. Patrignani, W.G.J.H.M. van Sark, and A.J. Chatten, “Luminescent solar concentrators with fiber geometry,” Opt. Express 21(103), A503–A514 (2013).
    [Crossref] [PubMed]
  17. W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
    [Crossref]
  18. S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
    [Crossref]
  19. R.H. Inman, G.V. Shcherbatyuk, D. Medvedko, A. Gopinathan, and S. Ghosh, “Cylindrical luminescent solar concentrators with near-infrared quantum dots,” Opt. Express 19(24), 24308–24313 (2011).
    [Crossref] [PubMed]
  20. E.H. Banaei and A.F. Abouraddy, “Fiber luminescent solar concentrator with 5.7% conversion efficiency,” Proc. SPIE 8821, 882102 (2013).
    [Crossref]
  21. S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
    [Crossref]
  22. E.H. Banaei and A.F. Abouraddy, “Design of a polymer optical fiber luminescent solar concentrator,” Prog. Photovolt: Res. Appl. 23(4), 403–416 (2013).
    [Crossref]
  23. C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
    [Crossref]
  24. J.M. Kim and P.S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. En. Mat. Sol. Cells 103, 35–40 (2012).
    [Crossref]
  25. D. J. Farrell, “PVTRACE optical ray tracing for photovoltaic devices and luminescent materials,” (2012) https://github.com/danieljfarrell/PVTRACE .
  26. D.J. Farrell, PhD Thesis, “Characterising the Performance of Luminescent Solar Concentrators,” University of London, 2008.
  27. C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
    [Crossref]
  28. R.W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20(17), 2934–2940 (1981).
    [Crossref] [PubMed]
  29. J. Sansregret, J.M. Drake, W.R.L. Thomas, and M.L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22(4), 573–577 (1983).
    [Crossref] [PubMed]
  30. W.G.K.H.M. van Sark, K.W.J. Barnham, L.H. Slooff, A.J. Chatten, A. Bchtemann, A. Meyer, S.J. McCormack, R. Koole, D.J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Doneg, A. Meijerink, and D. Vanmaekelbergh, “Luminescent Solar Concentrators - A review of recent results,” Opt. Express 16(26), 21773–21792 (2008).
    [Crossref] [PubMed]
  31. O.M. ten Kate, K.M. Hooning, and E. van der Kolk, “Quantifying self-absorption losses in luminescent solar concentrators,” Appl. Opt. 53(23), 5238–5245 (2014).
    [Crossref] [PubMed]

2016 (1)

F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
[Crossref]

2015 (4)

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

2014 (2)

O.M. ten Kate, K.M. Hooning, and E. van der Kolk, “Quantifying self-absorption losses in luminescent solar concentrators,” Appl. Opt. 53(23), 5238–5245 (2014).
[Crossref] [PubMed]

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

2013 (5)

G. Colantuono, A. Buckley, and R. Erdlyi, “Ray-optics modelling of rectangular and cylindrical 2-layer solar concentrators,” J. Lightwave Technol. 31(7), 1033–1044 (2013).
[Crossref]

O.Y. Edelenbosch, M. Fisher, L. Patrignani, W.G.J.H.M. van Sark, and A.J. Chatten, “Luminescent solar concentrators with fiber geometry,” Opt. Express 21(103), A503–A514 (2013).
[Crossref] [PubMed]

E.H. Banaei and A.F. Abouraddy, “Fiber luminescent solar concentrator with 5.7% conversion efficiency,” Proc. SPIE 8821, 882102 (2013).
[Crossref]

E.H. Banaei and A.F. Abouraddy, “Design of a polymer optical fiber luminescent solar concentrator,” Prog. Photovolt: Res. Appl. 23(4), 403–416 (2013).
[Crossref]

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

2012 (2)

J.M. Kim and P.S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. En. Mat. Sol. Cells 103, 35–40 (2012).
[Crossref]

M.G. Debije and P.P.C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar Energy for the Built Environment,” Adv. Ener. Mat 2(1), 12–35 (2012).
[Crossref]

2011 (1)

2010 (3)

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
[Crossref]

2008 (1)

2007 (1)

K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
[Crossref]

2002 (1)

C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
[Crossref]

1983 (1)

1981 (2)

1979 (1)

1977 (2)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collector,” Appl. Opt. 16(10), 2684–2689 (1977).
[Crossref] [PubMed]

1976 (1)

Aarts, M.P.J.

F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
[Crossref]

Abdul-Rahman, H.

C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
[Crossref]

Abouraddy, A.F.

E.H. Banaei and A.F. Abouraddy, “Fiber luminescent solar concentrator with 5.7% conversion efficiency,” Proc. SPIE 8821, 882102 (2013).
[Crossref]

E.H. Banaei and A.F. Abouraddy, “Design of a polymer optical fiber luminescent solar concentrator,” Prog. Photovolt: Res. Appl. 23(4), 403–416 (2013).
[Crossref]

Andr, P.S.

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Aste, N.

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

Balaban, B.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Banaei, E.H.

E.H. Banaei and A.F. Abouraddy, “Design of a polymer optical fiber luminescent solar concentrator,” Prog. Photovolt: Res. Appl. 23(4), 403–416 (2013).
[Crossref]

E.H. Banaei and A.F. Abouraddy, “Fiber luminescent solar concentrator with 5.7% conversion efficiency,” Proc. SPIE 8821, 882102 (2013).
[Crossref]

Barnham, K.W.J.

Batchelder, J.S.

Bchtemann, A.

Bende, E. E.

Bose, R.

Buckley, A.

Budel, T.

Burgers, A. R.

Carlos, L.D.

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Carter, S.A.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Chan, E.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Chatten, A.J.

Colantuono, G.

Cole, T.

Corrado, C.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Correia, S.F.H.

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

de Boer, D.K.G.

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Debije, M.G.

F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
[Crossref]

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

M.G. Debije and P.P.C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar Energy for the Built Environment,” Adv. Ener. Mat 2(1), 12–35 (2012).
[Crossref]

Del Pero, C.

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

Desmet, L.

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Doneg, C. M.

Drake, J.M.

Dutta, P.S.

J.M. Kim and P.S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. En. Mat. Sol. Cells 103, 35–40 (2012).
[Crossref]

Edelenbosch, O.Y.

Emery, K.

C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
[Crossref]

Erdlyi, R.

Farrell, D.J.

Fayer, M. D.

Ferreira, M.R.S.

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

Ferreira, R.A.S.

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Fisher, M.

Fusco, R.

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

Ghosh, S.

Goetzberger, A.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Gopinathan, A.

Greube, W.

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Gueymard, C.A.

C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
[Crossref]

Hardy, D.A.

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

Hooning, K.M.

Inman, R.H.

Kennedy, M.

Kerrouche, A.

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

Kim, J.M.

J.M. Kim and P.S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. En. Mat. Sol. Cells 103, 35–40 (2012).
[Crossref]

Koole, R.

Lambe, J.

Leow, S.W.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Lesiecki, M.L.

Levitt, J. A.

Lima, P.P.

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Loring, R. F.

Luo, Y.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

McCormack, S.J.

McIntosh, K.R.

K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
[Crossref]

Medvedko, D.

Meijerink, A.

Meyer, A.

Meyer, T.

Myers, D.

C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
[Crossref]

Olson, R.W.

Osborn, M.

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

Palladino, P.

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

Patrignani, L.

Pecoraro, E.

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Quilitz, J.

Rao, S.P.

C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
[Crossref]

Ras, A.J.M.

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Reinders, A.H.M.E

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Ribeiro, S.J.K.

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

Richards, B.S.

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
[Crossref]

Ross, D.

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

Sansregret, J.

Shcherbatyuk, G.V.

Slooff, L.H.

Tagliabue, L.C.

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

ten Kate, O.M.

Testa, D.

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

Thomas, W.R.L.

Tian, X.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

van der Kolk, E.

van Sark, W.G.J.H.M.

van Sark, W.G.K.H.M.

Vanmaekelbergh, D.

Verbunt, P.P.C.

M.G. Debije and P.P.C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar Energy for the Built Environment,” Adv. Ener. Mat 2(1), 12–35 (2012).
[Crossref]

Vishwanathan, B.

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Vossen, F.M.

F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
[Crossref]

Wang, C.

C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
[Crossref]

Wang, T.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

Wang, X.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

Weber, W. H.

Wu, S.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

Wu, W.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

Yamada, N.

K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
[Crossref]

Zahn, F.H.

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

Zewail, A.H.

Zhang, Q.

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

Adv. Ener. Mat (1)

M.G. Debije and P.P.C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar Energy for the Built Environment,” Adv. Ener. Mat 2(1), 12–35 (2012).
[Crossref]

Appl. Opt. (7)

Appl. Phys. (Berl.) (1)

A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys. (Berl.) 14(2), 123–139 (1977).
[Crossref]

Appl. Phys. B. (1)

K.R. McIntosh, N. Yamada, and B.S. Richards, “Theoretical comparison of cylindrical and square-planar luminescent solar concentrators,” Appl. Phys. B. 88(2), 285–290 (2007).
[Crossref]

Energy and Buildings (2)

F.M. Vossen, M.P.J. Aarts, and M.G. Debije, “Visual performance of red luminescent solar concentrating windows in an office environment,” Energy and Buildings 113, 123–132 (2016).
[Crossref]

C. Wang, H. Abdul-Rahman, and S.P. Rao, “Daylighting can be fluorescent: Development of a fiber solar concentrator and test for its indoor illumination,” Energy and Buildings 42(5), 717–727 (2010).
[Crossref]

Int. J. Energy Res (1)

C. Wang, H. Abdul-Rahman, and S.P. Rao, “A new design of luminescent solar concentrator,” Int. J. Energy Res 34(15), 1372–1385 (2010).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Proc. SPIE (1)

E.H. Banaei and A.F. Abouraddy, “Fiber luminescent solar concentrator with 5.7% conversion efficiency,” Proc. SPIE 8821, 882102 (2013).
[Crossref]

Prog. Photovolt: Res. Appl. (1)

E.H. Banaei and A.F. Abouraddy, “Design of a polymer optical fiber luminescent solar concentrator,” Prog. Photovolt: Res. Appl. 23(4), 403–416 (2013).
[Crossref]

Renew. Energy (1)

N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, and R. Fusco, “Performance analysis of a large-area luminescent solar concentrator module,” Renew. Energy 76, 330–337 (2015).
[Crossref]

Sol. En. Mat. Sol. Cells (4)

A. Kerrouche, D.A. Hardy, D. Ross, and B.S. Richards, “Luminescent solar concentrators: From experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV,” Sol. En. Mat. Sol. Cells 122, 99–106 (2014).
[Crossref]

S.F.H. Correia, P.P. Lima, P.S. Andr, M.R.S. Ferreira, and L.D. Carlos, “High-efficiency luminescent solar concentrators for flexible waveguiding photovoltaics,” Sol. En. Mat. Sol. Cells 138, 51–57 (2015).
[Crossref]

C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, and S.A. Carter, “Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design,” Sol. En. Mat. Sol. Cells 111, 74–81 (2013).
[Crossref]

J.M. Kim and P.S. Dutta, “Optical efficiency-concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator,” Sol. En. Mat. Sol. Cells 103, 35–40 (2012).
[Crossref]

Solar Energy (4)

C.A. Gueymard, D. Myers, and K. Emery, “Proposed reference irradiance spectra for solar energy systems testing,” Solar Energy 73(6), 443–467 (2002).
[Crossref]

W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian, and Q. Zhang, “Hybrid solar concentrator with zero self-absorption loss,” Solar Energy 84(12), 2140–2145 (2010).
[Crossref]

B. Vishwanathan, A.H.M.E Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, and M.G. Debije, “A comparison of performance of flat and bent photovoltaic luminescent solar concentrators,” Solar Energy 112, 120–127 (2015).
[Crossref]

N. Aste, L.C. Tagliabue, P. Palladino, and D. Testa, “Integration of a luminescent solar concentrator: Effects on daylight, correlated color temperature, illuminance level and color rendering index,” Solar Energy 114, 174–182 (2015).
[Crossref]

Other (3)

S.F.H. Correia, P.P. Lima, E. Pecoraro, S.J.K. Ribeiro, P.S. Andr, R.A.S. Ferreira, and L.D. Carlos, “Scale up the collection area of luminescent solar concentrators towards metre-length flexible waveguiding photovoltaics,” Prog. Photovolt. Res. Appl. (2016).
[Crossref]

D. J. Farrell, “PVTRACE optical ray tracing for photovoltaic devices and luminescent materials,” (2012) https://github.com/danieljfarrell/PVTRACE .

D.J. Farrell, PhD Thesis, “Characterising the Performance of Luminescent Solar Concentrators,” University of London, 2008.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 A mid-simulation snapshot of (a) the direct and (b) the diffuse component of light illuminating a cylindrical LSC array, using the PVTRACE raytrace model. The direct light vector is determined by the position of the Sun. The diffuse component is modelled as a hemispherical light source. The spectra for both components of light is obtained from the SMARTS software [27].
Fig. 2
Fig. 2 Demonstrating the short distance effects of luminescence re-absorption and re-emission in fibres doped at high concentration. A spot on a fibre is excited by a 532nm laser. Distances shown are the excitation distance away from the measured end of the fibre. The non-redshifted top surface emission spectrum is shown for reference. The most significant re-absorption and re-emission occurs within the first 1cm of the fibre, as shown by the high redshift for both a Nanoforce-manufactured fibre (a), and a commercially bought Lumogen Red F 305 fibre from LasIRvis Optoelectronic Components Ltd (b).
Fig. 3
Fig. 3 Experimental values of photon concentrations of fibres of differing lengths from three sample batches. Nanoforce fibre dye load concentrations are 0.5±0.25wt% with average diameters of 0.64mm, 0.7mm and 1.12mm. The LasIRvis fibre has a diameter of 0.5mm and has a dye load concentration less than that of the Nanoforce manufactured fibres. Photon concentration increases linearly with fibre length up to the 2 metres of manufactured fibre.This agrees with previous raytrace modelling [16]
Fig. 4
Fig. 4 Raytracing to determine the shading effects of one cylinder to another. Two circles are illuminated at 0°, 50° and 61° angles of incidence respectively for (a)–(c). Secondary effect ray traces caused by Fresnel reflection, whilst included in the model, are removed from figures for clarity. The focussing effect of a circle geometry can be seen, and at a non-zero angle of incidence, a cylinder will focus light away from its neighbour, thereby rendering it essentially opaque (b). The threshold angle at which the shading circle starts to redirect light back into its neighbour is 60°, and at 61° this redirecting is already quite pronounced (c). The three major paths of light through two circles are: 1) light incident on the desired circle passing through, 2) light being directed into the desired circle by its neighbor, and 3) neighbour directing light away from the desired circle.
Fig. 5
Fig. 5 Demonstrating the light trapping effect of a circular array against planar geometry, with incident light coming in at 65°. The path length of incident light is increased through the LSC, thereby giving it a greater probability of absorption. Secondary effect ray traces are removed from figures for clarity.
Fig. 6
Fig. 6 Two circles shading the left (desired) circle with incident light at an angle of 75°. Secondary effect ray traces are removed from figures for clarity. The five main paths of light through the system are: 1) incident light passing directly through the desired circle, 2) light redirected into the desired circle by its nearest neighbour, 3) light redirected into the desired circle from its next nearest neighbour, via its nearest neighbour, 4) light diverted away from a circle’s neighbour, and 5) light from the next nearest neighbour, being redirected into the nearest neighbour but then missing the desired circle. Light path 5 is responsible for the decrease in number of photons reaching the desired circle at angles of incidence greater than 70°.
Fig. 7
Fig. 7 Ratio of light entering the left circle to incident light with increasing angles of incidence, with 2 circles, 3 circles and an infinite array of circles, in order to demonstrate shading/light redirection effects. Secondary effect ray traces are removed from figures for clarity. There are two threshold angles, the first being at 60° when light which was initially focused away from the left circle, is then being redirected back into it. The second threshold angle applies to three circles or more, at 70°, when light gets focussed away again from the left circle, which is caused by shading and redirection effects of subsequent circles.
Fig. 8
Fig. 8 Comparing the efficiencies of circular (left) and planar (right) rod LSC arrays, for the 10th March, 10th April, 10th May between 0700h – 1200h and 21st June 2014 between 0600h – 1200h. For each time segment, the red top sections show the contribution of the diffuse component of the incident light, and the blue bottom sections show the contribution of the direct component of the incident light. Circular geometries outperform square geometries up until 1000h for 10th March, 1000h for 10th April, 0830h for10th May and 0800h for 21st June 2014. This is due to increased efficiency values for the direct component of incident light, which can be attributed to its angle of incidence being within the ”light redirection” range as explained in Section 4
Fig. 9
Fig. 9 Normalised efficiency values for the circular array at different times of the day vs the ratio of incident photons directed into a cylinder from the sun and the cylinder’s neighbours (triangle). Graphs for (a) 10th March, (b) 10th April, (c) 10th May and (d) 21st June 2014. The angle of incidence is matched to the time of day. The efficiency increase/decrease behaviour matches that of the ratio of photons entering a given cylinder relative to the light’s angle of incidence, confirming the impact geometric effects have on a cylindrical array.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C γ = C G μ opt = ϕ out ϕ in

Metrics