Abstract

A novel method enabling rapid fabrication of 2D periodic arrays of plasmonic nanoparticles across large areas is presented. This method is based on the interference of multiple coherent beams originating from diffraction of large-diameter collimated beam on a transmission phase mask. Mutual orientation of the interfering beams is determined by parameters of the used phase mask. Herein, parameters of the phase mask (periods and modulation depth) are selected to yield an interference pattern with high contrast and narrow well-separated maxima. Finally, multiple beam interference lithography (MBIL)-based fabrication of periodic plasmonic arrays with selected nanomotifs including discs, disc dimers, rods and bowtie antennas is demonstrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric lithography for nanoscale feature patterning: a comparative analysis between laser interference, evanescent wave interference, and surface plasmon interference

Kandammathe Valiyaveedu Sreekanth, Jeun Kee Chua, and Vadakke Matham Murukeshan
Appl. Opt. 49(35) 6710-6717 (2010)

High throughput fabrication of large-area plasmonic color filters by soft-X-ray interference lithography

Libin Sun, Xiaolin Hu, Qingjun Wu, Liansheng Wang, Jun Zhao, Shumin Yang, Renzhong Tai, Hans-Jorg Fecht, Dong-Xian Zhang, Li-Qiang Wang, and Jian-Zhong Jiang
Opt. Express 24(17) 19112-19121 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
    [Crossref] [PubMed]
  3. H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84(4), 457–459 (2004).
    [Crossref]
  4. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [Crossref] [PubMed]
  5. M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
    [Crossref]
  6. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [Crossref] [PubMed]
  7. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  8. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [Crossref] [PubMed]
  9. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
    [Crossref]
  10. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
    [Crossref] [PubMed]
  11. A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
    [Crossref]
  12. X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
    [Crossref] [PubMed]
  13. M. Vala and J. Homola, “Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays,” Opt. Express 22(15), 18778–18789 (2014).
    [Crossref] [PubMed]
  14. X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
    [Crossref]
  15. H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
    [Crossref]
  16. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref] [PubMed]
  17. H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
    [Crossref]
  18. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33(13), 1434–1436 (2008).
    [Crossref] [PubMed]
  19. Y. Hua, J. Y. Suh, W. Zhou, M. D. Huntington, and T. W. Odom, “Talbot effect beyond the paraxial limit at optical frequencies,” Opt. Express 20(13), 14284–14291 (2012).
    [Crossref] [PubMed]

2015 (1)

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

2014 (1)

2013 (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

2010 (2)

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[Crossref] [PubMed]

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

2009 (1)

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

2008 (1)

2005 (1)

2004 (1)

H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84(4), 457–459 (2004).
[Crossref]

2002 (3)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[Crossref]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[Crossref] [PubMed]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

1996 (1)

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Atwater, H. A.

Ayerdi, I.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Baba, T.

H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84(4), 457–459 (2004).
[Crossref]

Begliarbekov, M.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Berthou, T.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Brolo, A. G.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Brueck, S. R. J.

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

Cai, L. Z.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[Crossref]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[Crossref] [PubMed]

Carlen, E. T.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

Cerrina, F.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chen, X. L.

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

Clube, F.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Dais, C.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

David, C.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Devine, D. J.

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Echeverria, M.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Ellman, M.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Ferry, V. E.

Gaylord, T. K.

Gobrecht, J.

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Homola, J.

Hsu, C. C.

Hua, Y.

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Huntington, M. D.

Ichikawa, H.

H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84(4), 457–459 (2004).
[Crossref]

Jin, M. L.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Lai, N. D.

Li, H. B. T.

Liang, W. P.

Lin, C. H.

Lin, J. H.

Mao, W.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Y. Hua, J. Y. Suh, W. Zhou, M. D. Huntington, and T. W. Odom, “Talbot effect beyond the paraxial limit at optical frequencies,” Opt. Express 20(13), 14284–14291 (2012).
[Crossref] [PubMed]

Olaizola, S. M.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Otto, C.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

Peng, C. S.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Perez, N.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Polman, A.

Pully, V.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

Rodriguez, A.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Savall, J.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Schropp, R. E. I.

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Solak, H. H.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Song, Q.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Stay, J. L.

Strauf, S.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Y. Hua, J. Y. Suh, W. Zhou, M. D. Huntington, and T. W. Odom, “Talbot effect beyond the paraxial limit at optical frequencies,” Opt. Express 20(13), 14284–14291 (2012).
[Crossref] [PubMed]

Theuring, M.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Vala, M.

Valsecchi, C.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

van den Berg, A.

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

Verevkin, Y. K.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Verhagen, E.

Verschuuren, M. A.

Walters, R. J.

Wang, L.

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Wang, Y. R.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[Crossref]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[Crossref] [PubMed]

Wang, Z. B.

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Yang, X. L.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27(11), 900–902 (2002).
[Crossref] [PubMed]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[Crossref]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Zaidi, S. H.

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

Zhang, X.

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Y. Hua, J. Y. Suh, W. Zhou, M. D. Huntington, and T. W. Odom, “Talbot effect beyond the paraxial limit at optical frequencies,” Opt. Express 20(13), 14284–14291 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84(4), 457–459 (2004).
[Crossref]

J. Mod. Opt. (1)

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49(10), 1663–1672 (2002).
[Crossref]

J. Phys. Chem. C (1)

M. L. Jin, V. Pully, C. Otto, A. van den Berg, and E. T. Carlen, “High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced raman spectroscopy,” J. Phys. Chem. C 114(50), 21953–21959 (2010).
[Crossref]

J. Vac. Sci. Technol. B (2)

X. L. Chen, S. H. Zaidi, S. R. J. Brueck, and D. J. Devine, “Interferometric lithography of sub-micrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14(5), 3339–3349 (1996).
[Crossref]

H. H. Solak, C. David, J. Gobrecht, L. Wang, and F. Cerrina, “Multiple-beam interference lithography with electron beam written gratings,” J. Vac. Sci. Technol. B 20(6), 2844–2848 (2002).
[Crossref]

Langmuir (1)

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Microelectron. Eng. (2)

A. Rodriguez, M. Echeverria, M. Ellman, N. Perez, Y. K. Verevkin, C. S. Peng, T. Berthou, Z. B. Wang, I. Ayerdi, J. Savall, and S. M. Olaizola, “Laser interference lithography for nanoscale structuring of materials: From laboratory to industry,” Microelectron. Eng. 86(4-6), 937–940 (2009).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

Nano Lett. (1)

X. Zhang, M. Theuring, Q. Song, W. Mao, M. Begliarbekov, and S. Strauf, “Holographic control of motive shape in plasmonic nanogap arrays,” Nano Lett. 11(7), 2715–2719 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8(7), 506–511 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Other (1)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Scheme of a multiple-beam interferometric setup (a) used for the exposure of the photosensitive layer with 9 beams (overlap of all beams on the photosensitive sample is highlighted by the dotted line) transmitted through a 2D phase mask (b). The interference pattern (c) with periods Λx = Λy = 800 nm calculated for the phase mask with periods ΛG,x = ΛG,y = 800 nm (KG = 2π/ΛG) and linearly polarized incoming laser beam with the wavelength λ = 405 nm.
Fig. 2
Fig. 2 a) Wave vectors of 9 transmitted beams diffracted by a 2D phase mask with periods ΛG,x and ΛG,y. Schematic representation of the tangential components of the wave vectors for cases with: b) 13 beams and c) 21 beams. Red dots represents endpoints of the wave vectors of diffraction orders transmitted into the medium with refractive index nT while the grey dots denote the evanescent orders.
Fig. 3
Fig. 3 Interference patterns calculated for three different numbers of interfering beams transmitted through the phase mask with period Λ and equal diffraction efficiencies for all beams. a) Λ = 530 nm, 4 beams (zeroth order neglected), b) Λ = 780 nm, 8 beams (zeroth order neglected), c) Λ = 1100 nm, 21 beams (zeroth order included); λ0 = 405 nm.
Fig. 4
Fig. 4 Schematic drawing of the multiple-beam interferometric setup based on a transmission 2D phase mask.
Fig. 5
Fig. 5 Plasmonic arrays fabricated using three different phase masks with periods a) Λ = 750 nm, b) Λ = 1260 nm and c) Λ = 1800 nm. The SEM micrographs of the prepared arrays are shown before and after the lift-off of the photoresist layer. The theoretical patterns (top) are shown for comparison.
Fig. 6
Fig. 6 Fabricated arrays consisting of a) nanodisc dimers, b) nanorods and c) bowtie antennas prepared by multiple exposures of the photoresist layer at different positions of the phase mask with respect to the photosensitive sample. From top to bottom, layout of the designed geometry of the array and SEM micrographs of gold-coated patterned photoresist and final (gold on glass) nanoarrays are shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E n = E n e n exp( i k n r+ ϕ n ),
I( r )= m=1 p E m 2 +2 m=2 p n<m E m E n V mn cos[ ( k m k n )r+ ϕ m ϕ n ] ,
k m,n = k inc +m K G,x +n K G,y ,

Metrics