Abstract

A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10−4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Faraday isolator based on TSAG crystal for high power lasers

E. A. Mironov and O. V. Palashov
Opt. Express 22(19) 23226-23230 (2014)

Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power

Efim Khazanov, Nicolay Andreev, Oleg Palashov, Anatoly Poteomkin, Alexander Sergeev, Oliver Mehl, and David H. Reitze
Appl. Opt. 41(3) 483-492 (2002)

High-power Faraday isolators based on TAG ceramics

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou
Opt. Express 22(3) 2578-2583 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett. 11(10), 623–625 (1986).
    [Crossref] [PubMed]
  2. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
    [Crossref]
  3. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  4. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [Crossref] [PubMed]
  5. T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
    [Crossref] [PubMed]
  6. E. Shcherbakov, V. Fomin, A. Abramov, A. Ferin, D. Mochalov, and V. P. Gapontsev, “Industrial Grade 100 kW Power CW Fiber Laser,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper ATh4A.2.
    [Crossref]
  7. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012).
    [Crossref] [PubMed]
  8. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).
    [Crossref] [PubMed]
  9. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
    [Crossref]
  10. I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
    [Crossref] [PubMed]
  11. I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
    [Crossref]
  12. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
    [Crossref]
  13. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  14. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  15. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  16. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref] [PubMed]
  17. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
    [Crossref] [PubMed]
  18. R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
    [Crossref]
  19. H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
    [Crossref]
  20. C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
    [Crossref]
  21. Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
    [Crossref]
  22. A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
    [Crossref]
  23. I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
    [Crossref]
  24. E. A. Mironov and O. V. Palashov, “Faraday isolator based on TSAG crystal for high power lasers,” Opt. Express 22(19), 23226–23230 (2014).
    [Crossref] [PubMed]
  25. I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015).
    [Crossref]
  26. A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
    [Crossref]
  27. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
    [Crossref]
  28. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
    [Crossref]
  29. E. A. Mironov, A. V. Voitovich, A. V. Starobor, and O. V. Palashov, “Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity,” Appl. Opt. 53(16), 3486–3491 (2014).
    [Crossref] [PubMed]
  30. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
    [Crossref]
  31. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
    [Crossref]
  32. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [Crossref] [PubMed]

2015 (3)

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015).
[Crossref]

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

2014 (6)

2013 (3)

2012 (4)

I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
[Crossref] [PubMed]

2011 (2)

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

2010 (2)

2008 (1)

2007 (1)

2004 (1)

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

2003 (1)

2002 (2)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (2)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

1992 (1)

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

1986 (1)

Akahane, Y.

Andreev, N.

Aoyama, M.

Babin, A.

Banerjee, S.

Boyd, R. W.

Chen, C.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Collier, J. L.

Diedrich, F.

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

Ertel, K.

Fujimoto, Y.

Fukuda, T.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Furuse, H.

Gauthier, D. J.

Hernandez-Gomez, C.

Ikegawa, T.

Inoue, N.

Izawa, Y.

Jeong, T. M.

Kagamitani, Y.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Kan, H.

Kanabe, T.

Katai, R.

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Khazanov, E. A.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Kiriyama, H.

Kiselev, A.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Kurita, T.

Lee, J.

Lee, S. K.

Lin, H.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Loeser, M.

Ma, J.

Machida, H.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Martinek, J.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

Mason, P. D.

Matsumoto, O.

Matsuoka, S.

Mehl, O.

Meschede, D.

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

Mironov, E.

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

Mironov, E. A.

Miyamoto, M.

Miyanaga, N.

Motokoshi, S.

Mukhin, I.

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Nakatsuka, M.

Narum, P.

Norimatsu, T.

Nozawa, H.

Palashov, O.

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[Crossref] [PubMed]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. H. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17(1), 99–102 (2000).
[Crossref]

Palashov, O. V.

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

E. A. Mironov and O. V. Palashov, “Faraday isolator based on TSAG crystal for high power lasers,” Opt. Express 22(19), 23226–23230 (2014).
[Crossref] [PubMed]

E. A. Mironov, A. V. Voitovich, A. V. Starobor, and O. V. Palashov, “Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity,” Appl. Opt. 53(16), 3486–3491 (2014).
[Crossref] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[Crossref]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Pawlak, D. A.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Phillips, P. J.

Poteomkin, A.

Reitze, D. H.

Sato, H.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Sekine, T.

Sergeev, A.

Siebold, M.

Snetkov, I.

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015).
[Crossref]

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

Snetkov, I. L.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[Crossref]

Starobor, A.

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

Starobor, A. V.

Sung, J. H.

Tanner, D. B.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Telle, H. R.

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

Teng, H.

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Tokita, S.

Tsubakimoto, K.

Ueda, H.

Voitovich, A. V.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Mironov, A. V. Voitovich, A. V. Starobor, and O. V. Palashov, “Compensation of polarization distortions in Faraday isolators by means of magnetic field inhomogeneity,” Appl. Opt. 53(16), 3486–3491 (2014).
[Crossref] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Wynands, R.

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

Yagi, H.

Yamakawa, K.

Yanagitani, T.

Yasuhara, R.

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[Crossref] [PubMed]

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

Yasyhara, R.

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

Yi, Q.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Yoon, J. W.

Yoshida, H.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

Yoshikawa, A.

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Yu, T. J.

Zelenogorskii, V. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Zhou, S.

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

Zhou, S. M.

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

I. L. Snetkov and O. V. Palashov, “Compensation of thermal effects in Faraday isolator for high average power lasers,” Appl. Phys. B 109(2), 239–247 (2012).
[Crossref]

Appl. Phys. Lett. (2)

R. Yasuhara, I. Snetkov, A. Starobor, and O. Palashov, “Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power,” Appl. Phys. Lett. 105(24), 241104 (2014).
[Crossref]

C. Chen, S. Zhou, H. Lin, and Q. Yi, “Fabrication and performance optimization of the magneto-optical (Tb1−xRx)3Al5O12 (R = Y, Ce) transparent ceramics,” Appl. Phys. Lett. 101(13), 131908 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

I. Snetkov, R. Yasuhara, A. Starobor, E. Mironov, and O. V. Palashov, “Thermo-Optical and Magneto-Optical Characteristics of Terbium Scandium Aluminum Garnet Crystals,” IEEE J. Quantum Electron. 51(7), 1–7 (2015).
[Crossref]

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, “Review of Faraday Isolators for Kilowatt Average Power Lasers,” IEEE J. Quantum Electron. 50(6), 434–443 (2014).
[Crossref]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. B. Tanner, and D. H. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35(8), 1116–1122 (1999).
[Crossref]

J. Mater. Res. (1)

Y. Kagamitani, D. A. Pawlak, H. Sato, A. Yoshikawa, J. Martinek, H. Machida, and T. Fukuda, “Dependence of Faraday effect on the orientation of terbium-scandium-aluminum garnet single crystal,” J. Mater. Res. 19(2), 579–583 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

A. Yoshikawa, Y. Kagamitani, D. A. Pawlak, H. Sato, H. Machida, and T. Fukuda, “Czochralski growth of Tb3Sc2Al3O12 single crystal for Faraday rotator,” Mater. Res. Bull. 37(1), 1–10 (2002).
[Crossref]

Opt. Express (7)

E. A. Mironov and O. V. Palashov, “Faraday isolator based on TSAG crystal for high power lasers,” Opt. Express 22(19), 23226–23230 (2014).
[Crossref] [PubMed]

I. Snetkov, I. Mukhin, O. Palashov, and E. Khazanov, “Compensation of thermally induced depolarization in Faraday isolators for high average power lasers,” Opt. Express 19(7), 6366–6376 (2011).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

T. Sekine, S. Matsuoka, R. Yasuhara, T. Kurita, R. Katai, T. Kawashima, H. Kan, J. Kawanaka, K. Tsubakimoto, T. Norimatsu, N. Miyanaga, Y. Izawa, M. Nakatsuka, and T. Kanabe, “84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd:YLF ring amplifier with phase-conjugated wavefront corrector,” Opt. Express 18(13), 13927–13934 (2010).
[Crossref] [PubMed]

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (3)

I. Snetkov and O. Palashov, “Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field,” Opt. Mater. 42, 293–297 (2015).
[Crossref]

A. Starobor, R. Yasyhara, I. Snetkov, E. Mironov, and O. Palashov, “TSAG-based cryogenic Faraday isolator,” Opt. Mater. 47, 112–117 (2015).
[Crossref]

H. Lin, S. M. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. 33(11), 1833–1836 (2011).
[Crossref]

Quantum Electron. (3)

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29(1), 59–64 (1999).
[Crossref]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40(3), 276–281 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992).
[Crossref]

Other (1)

E. Shcherbakov, V. Fomin, A. Abramov, A. Ferin, D. Mochalov, and V. P. Gapontsev, “Industrial Grade 100 kW Power CW Fiber Laser,” in Advanced Solid-State Lasers Congress, G. Huber and P. Moulton, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper ATh4A.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Picture of the terbium scandium aluminum garnet (TSAG) crystal sample.
Fig. 2
Fig. 2 Schematic of the experimental setup used for thermally induced depolarization measurements.
Fig. 3
Fig. 3 Experimental results of depolarization as a function of laser power. Open red circles show the results for terbium scandium aluminum garnet (TSAG) with <001> crystal orientation in the absence of a magnetic field. Closed blue circles show the results for TSAG with <001> crystal orientation in the presence of a magnetic field. Black triangles show the result for TSAG with <111> crystal orientation in the absence of a magnetic field. Green squares show the results for TSAG with <111> crystal orientation in the presence of a magnetic field. Solid lines show the theoretical curves. The dotted line shows the second term of (10) and the dash-dotted line shows the third term of (10).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

γ= I d I 0 + I d
γ= 1 I 0 0 2π dφ 0 R 0 sin 2 ( δ 2 ) sin 2 ( 2Ψ δ c 2 ) δ l 2 δ 2 I( r )rdr+ + 1 I 0 0 2π dφ 0 R 0 ( cos( δ 2 )sin( δ c 2 ) δ c δ cos( δ c 2 )sin( δ 2 ) ) 2 I( r ) rdr,
I 0 = 0 2π dφ 0 R 0 I( r )rdr , δ 2 = δ l 2 + δ c 2 ,
δ l =ph 1+ ξ 2 tan 2 ( 2θ2φ ) 1+ tan 2 ( 2θ2φ ) , tan( 2Ψ2θ )=ξtan( 2φ2θ ), h( y= r 2 / r h 2 )= 1 y 0 y dz 0 z F( ζ )dζ ,
γ 0 = p 2 A 1 8 [ 1+( ξ 2 1 ) cos 2 ( 2θ ) ]+ p 4 A 2 384 [ 3( ξ 4 1 ) cos 2 ( 2θ )+ ξ 2 +3 ]+O( p 6 ),
A 1 = 0 h 2 ( u )F( u )du, A 2 = 0 h 4 ( u )F( u )du.
γ 45 = p 2 A 1 π 2 [ 1+( ξ 2 1 ) cos 2 ( 2θ π 4 ) ]+ + p 4 A 2 32 π 4 [ 24( ξ 4 1 )( π4 ) cos 2 ( 2θ π 4 )+3 ( π2 ) 2 ξ 4 +2( π 2 12 ) ξ 2 +3{ ( π+2 ) 2 32 } ]+ + p V 2 A 3 +O( p 6 )
p V = α 0 16κ ( P 0 + P 0 * )( 1 V dV dT + α T ), P 0 * =δH T 0 4πκ α 0 r h 2 R 0 2 , A 3 = 0 f 2 ( y ) exp( y ) dy [ 0 f( y ) exp( y ) dy ] 2 ,f( y )= 0 y dz z 0 z F( ζ )dζ .
γ 0 min A 1 8 p 2 + A 2 384 p 4 ξ 2 ,
γ 45 min A 1 π 2 p 2 + 3 ( π2 ) 2 A 2 32 π 4 ξ 4 p 4 + p V 2 A 3 .

Metrics