Abstract

Numerical simulations are employed to elucidate the physics underlying the enhanced femtosecond supercontinuum generation previously observed during optical filamentation in noble gases and in the presence of a weak seed pulse. Simulations based on the metastable electronic state approach are shown not only to capture the qualitative features of the experiment, but also reveal the relation of the observed enhancement to recent developments in the area of sub-cycle engineering of filaments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy and spectral enhancement of femtosecond supercontinuum in a noble gas using a weak seed

Trenton R. Ensley, Dmitry A. Fishman, Scott Webster, Lazaro A. Padilha, David J. Hagan, and Eric W. Van Stryland
Opt. Express 19(2) 757-763 (2011)

Carrier-wave shape effects in optical filamentation

J. M. Brown, C. Shanor, E. M. Wright, and M. Kolesik
Opt. Lett. 41(5) 859-862 (2016)

Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media

M. Kolesik and J. V. Moloney
Opt. Express 16(5) 2971-2988 (2008)

References

  • View by:
  • |
  • |
  • |

  1. For a comprehensive overview see,D. Faccio, A. Couairion, and P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation OpticsAracne Editrice (Rome, 2007).
  2. M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
    [Crossref] [PubMed]
  3. M. Kolesik and J. V. Moloney, “Perturbative and non-perturbative aspects of optical filamentation in bulk dielectric media,” Opt. Express 16, 2971–2988 (2008).
    [Crossref] [PubMed]
  4. P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
    [Crossref]
  5. P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
    [Crossref]
  6. J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
    [Crossref]
  7. J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
    [Crossref]
  8. E. E. Serebryannikov and A. M. Zheltikov, “Strong-field photoionization as excited state tunneling,” Phys. Rev. Lett. 116, 123901 (2016).
    [Crossref]
  9. M. Kolesik, J. M. Brown, A. Teleki, P. Jakobsen, J. V. Moloney, and E. M. Wright, “Metastable electronic states and nonlinear response for high-intensity optical pulses,” Optica 1, 323–331 (2014).
    [Crossref]
  10. J. M. Brown, C. Shanor, E. M. Wright, and M. Kolesik, “Carrier-wave shape effects in optical filamentation,” Opt. Lett. 41, 859 (2016).
    [Crossref] [PubMed]
  11. T. R. Ensley, D. A. Fishman, S. Webster, L. A. Padilha, D. J. Hagan, and E. W. Van Stryland, “Energy and spectral enhancement of femtosecond supercontinuum in a noble gas using a weak seed,” Opt. Express 19(2), 757–763 (2011).
    [Crossref] [PubMed]
  12. T. R. Ensley, “White light continuum for broadband nonlinear spectroscopy,” Ph.D. thesis, CREOLThe College of Optics and Photonics (2015).
  13. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
    [Crossref] [PubMed]
  14. X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B. 38, 2593 (2005).
    [Crossref]
  15. H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
    [Crossref]
  16. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations”, Phys. Rev. E. 70036604 (2004).
    [Crossref]
  17. J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations”, Phys. Rev. E 86, 036706 (2012).
    [Crossref]
  18. http://acms.arizona.edu/FemtoTheory/MK_personal/guppelab/

2016 (3)

J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
[Crossref]

E. E. Serebryannikov and A. M. Zheltikov, “Strong-field photoionization as excited state tunneling,” Phys. Rev. Lett. 116, 123901 (2016).
[Crossref]

J. M. Brown, C. Shanor, E. M. Wright, and M. Kolesik, “Carrier-wave shape effects in optical filamentation,” Opt. Lett. 41, 859 (2016).
[Crossref] [PubMed]

2015 (2)

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

2014 (2)

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

M. Kolesik, J. M. Brown, A. Teleki, P. Jakobsen, J. V. Moloney, and E. M. Wright, “Metastable electronic states and nonlinear response for high-intensity optical pulses,” Optica 1, 323–331 (2014).
[Crossref]

2012 (1)

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations”, Phys. Rev. E 86, 036706 (2012).
[Crossref]

2011 (1)

2008 (1)

2006 (1)

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

2005 (2)

X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B. 38, 2593 (2005).
[Crossref]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media,” Opt. Express 13, 10729–10741 (2005).
[Crossref] [PubMed]

2004 (1)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations”, Phys. Rev. E. 70036604 (2004).
[Crossref]

1985 (1)

H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
[Crossref]

Aközbek, N.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

Andreasen, J.

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations”, Phys. Rev. E 86, 036706 (2012).
[Crossref]

Becker, A.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

Béjot, P.

J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
[Crossref]

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Billard, F.

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Brown, J. M.

Chin, S.L.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

Cormier, E.

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Couairion, A.

For a comprehensive overview see,D. Faccio, A. Couairion, and P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation OpticsAracne Editrice (Rome, 2007).

Di Trapani, P.

For a comprehensive overview see,D. Faccio, A. Couairion, and P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation OpticsAracne Editrice (Rome, 2007).

Doussot, J.

J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
[Crossref]

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

Ensley, T. R.

Faccio, D.

For a comprehensive overview see,D. Faccio, A. Couairion, and P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation OpticsAracne Editrice (Rome, 2007).

Faucher, O.

J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Fishman, D. A.

Hagan, D. J.

Hertz, E.

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Jakobsen, P.

Karras, G.

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Kolesik, M.

Lavorel, B.

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

Lehmeir, H. J.

H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
[Crossref]

Leupacher, W.

H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
[Crossref]

Lin, C. D.

X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B. 38, 2593 (2005).
[Crossref]

Liu, W.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

Moloney, J. V.

Padilha, L. A.

Penzkofer, A.

H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
[Crossref]

Serebryannikov, E. E.

E. E. Serebryannikov and A. M. Zheltikov, “Strong-field photoionization as excited state tunneling,” Phys. Rev. Lett. 116, 123901 (2016).
[Crossref]

Shanor, C.

Teleki, A.

Théberge, F.

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

Tong, X. M.

X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B. 38, 2593 (2005).
[Crossref]

Van Stryland, E. W.

Webster, S.

Wright, E. M.

Zheltikov, A. M.

E. E. Serebryannikov and A. M. Zheltikov, “Strong-field photoionization as excited state tunneling,” Phys. Rev. Lett. 116, 123901 (2016).
[Crossref]

J. Phys. B. (1)

X. M. Tong and C. D. Lin, “Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime,” J. Phys. B. 38, 2593 (2005).
[Crossref]

J. Phys. B: Atom. Mol. Opt. Phys. (1)

J. Doussot, P. Béjot, G. Karras, F. Billard, and O. Faucher, “Phase control of two-color filamentation,”J. Phys. B: Atom. Mol. Opt. Phys. 48, 184005 (2015).
[Crossref]

Opt. Commun. (1)

H. J. Lehmeir, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67 (1985).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (2)

J. Doussot, P. Béjot, and O. Faucher, “Impact of third-harmonic generation on the filamentation process,” Phys. Rev. A 93, 033857 (2016).
[Crossref]

P. Béjot, G. Karras, F. Billard, J. Doussot, E. Hertz, B. Lavorel, and O. Faucher, “Sub-cycle engineering of laser filamentation in gas by harmonic seeding,” Phys. Rev. A 92, 053417 (2015).
[Crossref]

Phys. Rev. E (1)

J. Andreasen and M. Kolesik, “Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations”, Phys. Rev. E 86, 036706 (2012).
[Crossref]

Phys. Rev. E. (1)

M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations”, Phys. Rev. E. 70036604 (2004).
[Crossref]

Phys. Rev. Lett. (3)

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S.L. Chin, “Tunable ultrashort laser pulses generated through filamentation in gases,” Phys. Rev. Lett. 97, 023904 (2006).
[Crossref] [PubMed]

P. Béjot, G. Karras, F. Billard, E. Hertz, B. Lavorel, E. Cormier, and O. Faucher, “Harmonic generation and nonlinear propagation: When secondary radiations have primary consequences,” Phys. Rev. Lett. 112, 203902 (2014).
[Crossref]

E. E. Serebryannikov and A. M. Zheltikov, “Strong-field photoionization as excited state tunneling,” Phys. Rev. Lett. 116, 123901 (2016).
[Crossref]

Other (3)

For a comprehensive overview see,D. Faccio, A. Couairion, and P. Di Trapani, Conical Waves, Filaments and Nonlinear Filamentation OpticsAracne Editrice (Rome, 2007).

http://acms.arizona.edu/FemtoTheory/MK_personal/guppelab/

T. R. Ensley, “White light continuum for broadband nonlinear spectroscopy,” Ph.D. thesis, CREOLThe College of Optics and Photonics (2015).

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (1197 KB)      animation related to Fig. 6

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Angle integrated SC energy density in nJ/nm versus wavelength both with (red data points) and without (black data points) the seed applied. The left plot is for a seed wavelength of 600 nm and the right plot for 1300 nm. The gray regions indicate gaps in the experimental data in the vicinity of the pump and seed pulses. The data is adapted from that given in Fig. 2 of Ref. [11].
Fig. 2
Fig. 2 Simulated angle-integrated SC spectra versus wavelength for the 600 nm seed (left plot) and the seed centered at 1300 nm (right plot). The gray regions indicate the experimental gaps around the pump (710–850 nm) and seed pulses (550–650 nm for the 600 nm seed and 1240–1340 nm for the 1300 nm seed).
Fig. 3
Fig. 3 Enhancement of the SC generation. a) The red line shows the experimental results from Ref. [11] for the enhancement as a function of seed wavelength with a peak enhancement of around 3 for a seed wavelength of around 650 nm. The blue line shows the corresponding result from the simulations, and shows a peak enhancement of around 5.4 for a seed wavelength of around 650 nm. b) Enhancement versus seed energy for a wavelength of 600 nm. For both cases the seed energy is 1 μ J. The inset shows the experimental data from Ref. [11] (see text for details).
Fig. 4
Fig. 4 a) Angle integrated spectra obtained for relative phases ϕ of 0 (black), π/5 (red), π/2 (green), as well as the unseeded case (blue), and b) integrated energy in the wavelength range 535 ± 5 nm, normalized to the value for ϕ = 0, versus the relative phase ϕ.
Fig. 5
Fig. 5 Non-collinear phase-matching of the FWM for seed wavelengths of (a) 600 nm, and (b) 1300 nm. For purposes of illustration the angles θ600 and θ1300 between the pump and probe are exaggerated.
Fig. 6
Fig. 6 Visualization 1. Animation of the evolution of the angularly resolved power spectrum |E(k,ω,z)|2 (on log scale), obtained by Fourier transforming the propagating field along the chamber length into the transverse wavenumber k and angular frequency ω, for the unseeded case (left), 600 nm seed (center), and the 1300 nm seed (right). The stills are for the case at the exit of the noble gas chamber.
Fig. 7
Fig. 7 Simulated spectra show a roughly order of magnitude enhancement of the super-continuum radiation for Argon (left plot) and Xenon (right plot) for seeds with wavelengths of 650 nm and 680 nm, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r e p h = λ S e e d | 1 n S e e d n P u m p | ,
cos ( θ ) = 4 k P u m p 2 + k S e e d 2 k F W M 2 4 k P u m p k S e e d .

Metrics