Abstract

In this paper, a new approach to dual comb generation based on well-known optical techniques (Gain-Switching and Optical Injection Locking) is presented. The architecture can be implemented using virtually every kind of continuous-wave semiconductor laser source (DFB, VCSEL, QCL) and without the necessity of electro-optic modulators. This way, a frequency-agile and adaptive dual-comb architecture is provided with potential implementation capabilities from mid-infrared to near ultraviolet. With a RF comb comprising around 70 teeth, the system is validated in the 1.5 μm region measuring the absorption feature of H13CN at 1538.523 nm with a minimum integration time of 10 μs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain-switching injection-locked dual optical frequency combs: characterization and optimization

Borja Jerez, Pedro Martín-Mateos, Estefanía Prior, Cristina de Dios, and Pablo Acedo
Opt. Lett. 41(18) 4293-4296 (2016)

Electro-optic THz dual-comb architecture for high-resolution, absolute spectroscopy

Borja Jerez, Frederik Walla, Andrés Betancur, Pedro Martín-Mateos, Cristina de Dios, and Pablo Acedo
Opt. Lett. 44(2) 415-418 (2019)

Spectral linewidth preservation in parametric frequency combs seeded by dual pumps

Zhi Tong, Andreas O. J. Wiberg, Evgeny Myslivets, Bill P. P. Kuo, Nikola Alic, and Stojan Radic
Opt. Express 20(16) 17610-17619 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  3. T. Udem, “Spectroscopy: frequency comb benefits,” Nat. Photonics 3(2), 82–84 (2009).
    [Crossref]
  4. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  6. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  7. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  8. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  9. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
    [Crossref]
  10. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  11. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  12. F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
    [Crossref] [PubMed]
  13. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref] [PubMed]
  14. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
    [Crossref]
  15. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
    [Crossref] [PubMed]
  16. V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
    [Crossref] [PubMed]
  17. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
    [Crossref]
  18. A. J. Fleisher, D. A. Long, Z. D. Reed, J. T. Hodges, and D. F. Plusquellic, “Coherent cavity-enhanced dual-comb spectroscopy,” Opt. Express 24(10), 10424–10434 (2016).
    [Crossref]
  19. S. Papp, K. Beha, P. Del’Haye, D. Cole, A. Coillet, and S. Diddams, “Self-referencing a CW laser with efficient nonlinear optics,” in Nonlinear Optics, OSA Technical Digest (Online) (Optical Society of America, 2015), paper NTh3A.6.
  20. F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814–26824 (2015).
    [Crossref] [PubMed]
  21. K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
    [Crossref] [PubMed]
  22. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  23. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  24. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1(5), 350–355 (2014).
    [Crossref]
  25. S. Yamashita and G. J. Cowle, “Single-polarization operation of fiber distributed feedback (DFB) lasers by injection locking,” J. Lightwave Technol. 17(3), 509–513 (1999).
    [Crossref]
  26. S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
    [Crossref]
  27. R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
    [Crossref] [PubMed]
  28. P. M. Anandarajah, S. P. Ó. Dúill, R. Zhou, and L. P. Barry, “Enhanced optical comb generation by gain-switching a single-mode semiconductor laser close to its relaxation oscillation frequency,” IEEE J. Sel. Top. Quantum Electron. 21(6), 592 (2015).
    [Crossref]
  29. C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
    [Crossref]
  30. A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
    [Crossref]
  31. E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
    [Crossref]
  32. A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
    [Crossref] [PubMed]
  33. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
    [Crossref] [PubMed]
  34. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
    [Crossref]
  35. A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
    [Crossref]
  36. H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
    [Crossref]
  37. C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
    [Crossref]
  38. X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
    [Crossref]
  39. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—A tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  40. P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
    [Crossref]
  41. R. T. Ramos, A. J. Seeds, A. Bordonalli, P. Gallion, and D. Erasme, “Optical injection locking and phase-lock loop combined systems,” Opt. Lett. 19(1), 4–6 (1994).
    [Crossref] [PubMed]
  42. E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
    [Crossref]
  43. S. L. Gilbert, W. C. Swann, and C. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration - SRM 2519a,” Natl. Inst. Stand. Technol. Spec. Publ. 260–137 (2005).

2016 (1)

2015 (9)

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814–26824 (2015).
[Crossref] [PubMed]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electrooptic dual-comb interferometry,” Opt. Express 23(23), 30557–30569 (2015).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

P. M. Anandarajah, S. P. Ó. Dúill, R. Zhou, and L. P. Barry, “Enhanced optical comb generation by gain-switching a single-mode semiconductor laser close to its relaxation oscillation frequency,” IEEE J. Sel. Top. Quantum Electron. 21(6), 592 (2015).
[Crossref]

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

2014 (9)

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

K. F. Lee, N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, M. E. Fermann, P. S. J. Russell, and I. Hartl, “Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation,” Opt. Lett. 39(7), 2056–2059 (2014).
[Crossref] [PubMed]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref] [PubMed]

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1(5), 350–355 (2014).
[Crossref]

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

2013 (3)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

2012 (1)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

2011 (5)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[Crossref]

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High performance InP-based photonic ICs—A tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

2010 (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

2009 (3)

T. Udem, “Spectroscopy: frequency comb benefits,” Nat. Photonics 3(2), 82–84 (2009).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2004 (1)

2003 (1)

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
[Crossref] [PubMed]

2000 (1)

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
[Crossref]

1999 (1)

1994 (1)

Acedo, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Akiyama, H.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Anandarajah, P.

Anandarajah, P. M.

P. M. Anandarajah, S. P. Ó. Dúill, R. Zhou, and L. P. Barry, “Enhanced optical comb generation by gain-switching a single-mode semiconductor laser close to its relaxation oscillation frequency,” IEEE J. Sel. Top. Quantum Electron. 21(6), 592 (2015).
[Crossref]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

Asahara, A.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Barbieri, S.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Barry, L. P.

Baumann, E.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Belyanin, A.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bielska, K.

Blanchard, R.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Bogris, A.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

Bordonalli, A.

Cano, E. P.

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Capasso, F.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Carras, M.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

Chang, C. H.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chang, W.

Chang-Hasnain, C. J.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Chen, S.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Chiles, J.

Chrostowski, L.

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

Coddington, I.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814–26824 (2015).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Coldren, L. A.

Coulombier, Q.

Cowle, G. J.

Criado, Á. R.

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

Cruz, F. C.

Davies, A. G.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

de Dios, C.

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

de Dios Fernandez, C.

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Dhillon, S. S.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Diddams, S. A.

Douglass, K. O.

Dúill, S. P. Ó.

P. M. Anandarajah, S. P. Ó. Dúill, R. Zhou, and L. P. Barry, “Enhanced optical comb generation by gain-switching a single-mode semiconductor laser close to its relaxation oscillation frequency,” IEEE J. Sel. Top. Quantum Electron. 21(6), 592 (2015).
[Crossref]

Durán, V.

Elsäßer, W.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

Erasme, D.

Erbert, G.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Erdmann, R.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Fathpour, S.

Fermann, M. E.

Fleisher, A. J.

Gallion, P.

Giorgetta, F. R.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814–26824 (2015).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Gohle, C.

Golling, M.

Gowar, J.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
[Crossref]

Granzow, N.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Guzzon, R. S.

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hartl, I.

Hodges, J. T.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Huynh, T. N.

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Ito, T.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jerez, B.

Johansson, L.

Johnson, T.

Jukam, N.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Juretzka, C.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

Keilmann, F.

Keller, U.

Khanna, S. P.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Klenner, A.

Klose, A.

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kofler, J.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Krishnamachari, U.

Latkowski, S.

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Lauritsen, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Lee, K. F.

Leijtens, X.

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[Crossref]

Leindecker, N.

Linfield, E. H.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Link, S. M.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Liu, W.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Long, D. A.

Madeo, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Malara, P.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Mangold, M.

Manquest, C.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Mansuripur, T. S.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Martin-Mateos, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Martín-Mateos, P.

Maser, D. L.

Maxwell, S. E.

Meissner, P.

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Newbury, N. R.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Nicholes, S. C.

Norberg, E. J.

O’Carroll, J.

Ortsiefer, M.

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Oustinov, D.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Paschke, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Phelan, R.

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Plusquellic, D. F.

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Posada-Roman, J.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Prior, E.

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

Ramos, R. T.

Reed, Z. D.

Riecke, S. M.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Rieker, G. B.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Ristic, S.

Ruiz-Llata, M.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Russell, P. S. J.

Schiller, S.

Schmidt, M. A.

Schunemann, P. G.

Schwertfeger, S.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

Seeds, A. J.

Serrano, A. R. C.

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

Simos, H.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

Sinclair, L. C.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Sirtori, C.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Suemoto, T.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Swann, W. C.

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Syvridis, D.

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

Tainta, S.

Tignon, J.

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Tilma, B. W.

Torres-Company, V.

Troles, J.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

T. Udem, “Spectroscopy: frequency comb benefits,” Nat. Photonics 3(2), 82–84 (2009).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Vasil’ev, P. P.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
[Crossref]

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vodopyanov, K. L.

Vujicic, V.

Wang, L.

Wenzel, H.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

White, I. H.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
[Crossref]

Wójcik, A. K.

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

Yamashita, S.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

Ycas, G.

Yoshita, M.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Zaugg, C. A.

Zhang, B.

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Zhou, R.

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. K. Wójcik, P. Malara, R. Blanchard, T. S. Mansuripur, F. Capasso, and A. Belyanin, “Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers,” Appl. Phys. Lett. 103(23), 231102 (2013).
[Crossref]

IEEE J. Quantum Electron. (3)

H. Simos, A. Bogris, D. Syvridis, and W. Elsäßer, “Intensity noise properties of mid-infrared injection locked quantum cascade lasers: I. Modeling,” IEEE J. Quantum Electron. 50(2), 98–105 (2014).
[Crossref]

C. Juretzka, H. Simos, A. Bogris, D. Syvridis, W. Elsäßer, and M. Carras, “Intensity noise properties of mid-infrared injection locked quantum cascade Lasers: II. Experiments,” IEEE J. Quantum Electron. 51(1), 2300208 (2015).
[Crossref]

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47(5), 715–722 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

P. M. Anandarajah, S. P. Ó. Dúill, R. Zhou, and L. P. Barry, “Enhanced optical comb generation by gain-switching a single-mode semiconductor laser close to its relaxation oscillation frequency,” IEEE J. Sel. Top. Quantum Electron. 21(6), 592 (2015).
[Crossref]

C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1386–1393 (2003).
[Crossref]

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. R. C. Serrano, C. de Dios Fernandez, E. P. Cano, M. Ortsiefer, P. Meissner, and P. Acedo, “VCSEL-based optical frequency combs: Toward efficient single-device comb generation,” IEEE Photonics Technol. Lett. 25(20), 1981–1984 (2013).
[Crossref]

E. Prior, C. de Dios, Á. R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo, “Experimental study of VCSEL-based optical frequency comb generators,” IEEE Photonics Technol. Lett. 26(21), 2118–2121 (2014).
[Crossref]

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

IET Optoelectron. (1)

X. Leijtens, “JePPIX: the platform for Indium Phosphide-based photonics,” IET Optoelectron. 5(5), 202–206 (2011).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (2)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10(1), 27–30 (2015).
[Crossref]

T. Udem, “Spectroscopy: frequency comb benefits,” Nat. Photonics 3(2), 82–84 (2009).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009).
[Crossref]

Nature (3)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (2)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, “Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer,” Phys. Rev. A 84(6), 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Phys. Rev. Lett. (2)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

F. R. Giorgetta, G. B. Rieker, E. Baumann, W. C. Swann, L. C. Sinclair, J. Kofler, I. Coddington, and N. R. Newbury, “Broadband phase spectroscopy over turbulent air paths,” Phys. Rev. Lett. 115(10), 103901 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000).
[Crossref]

Sci. Rep. (1)

A. Asahara, S. Chen, T. Ito, M. Yoshita, W. Liu, B. Zhang, T. Suemoto, and H. Akiyama, “Direct generation of 2-ps blue pulses from gain-switched InGaN VCSEL assessed by up-conversion technique,” Sci. Rep. 4, 6401 (2014).
[Crossref] [PubMed]

Other (2)

S. Papp, K. Beha, P. Del’Haye, D. Cole, A. Coillet, and S. Diddams, “Self-referencing a CW laser with efficient nonlinear optics,” in Nonlinear Optics, OSA Technical Digest (Online) (Optical Society of America, 2015), paper NTh3A.6.

S. L. Gilbert, W. C. Swann, and C. Wang, “Hydrogen cyanide H13C14N absorption reference for 1530 nm to 1565 nm wavelength calibration - SRM 2519a,” Natl. Inst. Stand. Technol. Spec. Publ. 260–137 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the spectrometer. LD M: Laser diode master; ISO: Optical isolator; C1/C2: Circulators; LD S1/2: Laser diode slaves; SG1/2: Signal generators; AOM: Acousto-optic modulator; FPC: Fibre polarization controller; DUT: Device under test; PD: Photodetector; ACQ: Acquisition system.
Fig. 2
Fig. 2 Example of Gain-Switching optical injection locking. The red line shows the master laser. After optical injection of the slave laser, a pulsed optical regime is induced in it using gain switching and, consequently, an OFC is generated (blue line). The injection of the master in one of the teeth of the OFC is discernible. In this example, the wavelength emission is fixed at 1538.75 nm and the repetition frequency of the OFC at 8 GHz. The spectra is measured in an optical spectrum analyser with 20 pm resolution.
Fig. 3
Fig. 3 Time-domain interferogram for a measurement time of 100 μs. The space between two consecutive pulses corresponds to the inverse of the difference in the repetition frequencies (in the example illustrated, 100 kHz)
Fig. 4
Fig. 4 Gain-switched injection-locked dual combs. a) Optical domain. Around 70 lines spaced 1 GHz (which corresponds to ~0.55 nm) into the 20 dB span. No expansion stages were included in the setup. b) RF spectra of the comb obtained after Fourier-transforming the signal heterodyned on the photodetector. The central line has the frequency which drives the acousto-optic modulator (40 MHz). The rest of modes are located at higher and lower frequencies asymmetrically due to the intrinsic properties of Gain-Switching in the lasers. The separation between lines (ergo, separation between repetition rates) is fixed at 100 kHz.
Fig. 5
Fig. 5 Experimental validation in the 1.5 μm region. The dots represent the trace of the measured ro-vibrational transition presenting the R(5) line of the 2ν3 band of H13CN for different measurement times along with the residuals: a) 10 μs; b) 50 μs; c) 100 μs; d) 500 μs; e) Average of 20 spectra measured over 20 ms. The continuous line shows the Voigt fit of the results, leading to standard deviations between the experimental data and the fit of: a) 2.34%; b) 1.89%; c) 1.49%; d) 1.27%; e) 0.57%. A bottom value for the transmittance of 78% (which corresponds to a peak absorption of 1.07 dB) is quantified at the centre of the spectral line, along with a linewidth around 8 GHz. These values agree with the standard values reported in the NIST SRM 2519a.

Metrics